磷酸八钙
材料科学
趋化因子
巨噬细胞极化
细胞生物学
巨噬细胞
骨免疫学
M2巨噬细胞
免疫系统
细胞因子
间质细胞
CCL18型
生物物理学
体外
化学
钙
免疫学
生物
癌症研究
兰克尔
生物化学
受体
冶金
激活剂(遗传学)
作者
Linghao Xiao,Yukari Shiwaku,Ryo Hamai,Kazuyoshi Baba,Kaori Tsuchiya,Satoshi Imazato,Keiichi Sasaki,Osamu Suzuki
摘要
Previous research has found that octacalcium phosphate (OCP) increases macrophage accumulation and alters the initial inflammatory response. However, the role of the immune response induced by OCP in osteogenesis remains unknown. This study investigated the behavior of macrophages and bone regeneration capacity during the early inflammatory stage of OCP-mediated osteogenesis. To assess the change in macrophage polarization and osteogenic capacity, we used a standardized rat defect model filled with OCP or calcium-deficient hydroxyapatite (CDHA)-a material obtained through the hydrolysis of the original OCP. OCP or CDHA granules were incubated with RAW264 cells for 5 days to investigate the effect of physicochemical characteristics on macrophage cytokine/chemokine expression in vitro. Our in vivo results show that due to the OCP implantation, macrophages in the rat tibial defect area tend to polarize to the M2 phenotype (anti-inflammatory) and inhibit the formation of the M1 phenotype (pro-inflammatory). In comparison to CDHA, OCP exhibited superior bone regeneration potential due to its rapid promotion of cortical bone healing and stimulation of macrophage-related growth factors. Furthermore, our in vitro results have shown that OCP regulates the expression of macrophage chemokines over time. Compared to incubation with CDHA, incubation with OCP caused changes in the ionic microenvironment. These findings suggest that the OCP-mediated macrophage polarization and secretion profile not only regulate immune function but also positively affect osteogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI