2D SnO/MoO3 van der Waals heterojunction with tunable electronic behavior for multifunctional applications: DFT calculations

异质结 范德瓦尔斯力 材料科学 密度泛函理论 纳米技术 光电子学 化学物理 计算化学 化学 凝聚态物理 分子 物理 量子力学
作者
Yuli Ma,Junyu Lang
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:611: 155719-155719 被引量:6
标识
DOI:10.1016/j.apsusc.2022.155719
摘要

• 2D SnO/MoO 3 vdW heterojunction was constructed through first-principles calculations. • Two layers in 2D SnO/MoO 3 are not restricted by the horizontal displacement. • Z-scheme 2D SnO/MoO 3 showed remarkable photocatalytic CO 2 reduction ability. • The main products of CO 2 reduction on 2D SnO/MoO 3 are CH 4 and CH 3 OH. • Band alignment of 2D SnO/MoO 3 can be effectively adjusted by negative electric field. Metal oxide van der Waals (vdW) heterostructures have attracted extensive attention in fundamental research and new-device design. The remarkable advantage of their tunable energy band structure makes it particularly important to develop versatile metal-oxide heterojunctions and to explore their mechanisms. Herein, 2D SnO/MoO 3 vdW heterojunction is successfully constructed by first-principles calculations. Interestingly, the two layers are not limited by horizontal displacements when forming the heterojunction. The electronic structure of the SnO/MoO 3 vdW heterojunction has been systematically investigated, and the underlying physical mechanism responsible for its band alignment has been further revealed. A Z-scheme charge transfer mechanism has been demonstrated in SnO/MoO 3 with remarkable photocatalytic CO 2 reduction capability. Most importantly, the band alignment can be efficiently tuned by varying the external electric field, indicating its multifunctional potential. Furthermore, the CO 2 reduction reaction pathway and product selectivity occurring at the surface of 2D SnO/MoO 3 vdW heterojunction can be optimized by adjusting the applied electric field. These findings will provide strong theoretical support for the design of novel multifunctional devices using SnO/MoO 3 vdW heterojunctions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助dlm采纳,获得10
刚刚
和谐的火龙果完成签到,获得积分10
1秒前
1秒前
柚子星完成签到,获得积分10
2秒前
Yiyyan完成签到,获得积分10
2秒前
2秒前
afterall完成签到 ,获得积分10
3秒前
3秒前
77完成签到,获得积分10
3秒前
Yuan完成签到,获得积分10
3秒前
畅快的胡萝卜完成签到,获得积分10
3秒前
Zoe完成签到,获得积分10
4秒前
852应助紧张的寒梦采纳,获得10
4秒前
活泼莫英完成签到,获得积分10
4秒前
交院发布了新的文献求助10
4秒前
珍惜完成签到,获得积分10
4秒前
kolya2013发布了新的文献求助10
5秒前
个性问寒完成签到,获得积分10
5秒前
栗子的小母牛完成签到,获得积分10
5秒前
sunset5min完成签到,获得积分10
5秒前
llllll完成签到,获得积分10
6秒前
王m完成签到 ,获得积分10
6秒前
6秒前
wanci应助张成采纳,获得10
6秒前
8秒前
Dr发布了新的文献求助200
8秒前
8秒前
小鱼发布了新的文献求助10
8秒前
8秒前
平常的白猫完成签到,获得积分10
9秒前
XxxPessimist1c完成签到,获得积分10
9秒前
nb完成签到,获得积分10
10秒前
稻草完成签到,获得积分10
10秒前
大模型应助Micheallee采纳,获得10
10秒前
醉熏的语海完成签到,获得积分10
10秒前
1111完成签到 ,获得积分20
10秒前
天真的秋翠完成签到,获得积分10
10秒前
456完成签到,获得积分10
11秒前
cg发布了新的文献求助10
11秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926