已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new perspective on the neurotoxic mechanisms of six typical per- and polyfluoroalkyl substances (PFAS): insights from integrating network toxicology and random forest algorithm

透视图(图形) 随机森林 毒理 算法 计算机科学 生物 人工智能
作者
Wei Cheng,Peng Lin,Z. W. Yang,Yu Xie,Di Gao,Min Chen
出处
期刊:Drug and Chemical Toxicology [Taylor & Francis]
卷期号:: 1-19
标识
DOI:10.1080/01480545.2025.2572631
摘要

Per- and polyfluoroalkyl substances (PFAS) are widely used in various industries but pose significant ecological and human health risks, particularly to the nervous system. However, the underlying neurotoxic mechanisms remain poorly understood. This study combines network toxicology and machine learning to explore these mechanisms. Using ADMETLAB 3.0, we assessed the environmental toxicity of six common PFAS and identified their potential targets using online tools. A compound-target interaction network was built, followed by protein-protein interaction (PPI) and KEGG pathway analyses to investigate toxicological pathways. Core targets were selected through machine learning, and differential gene expression was analyzed using transcriptomic data. Molecular docking simulations predicted binding affinities between PFAS and their core targets, while molecular dynamics simulations on key complexes were performed using Gromacs 2023.2 and the Charmm36 force field. PFDS showed the highest bioconcentration factors (BCF), while PFOA demonstrated the greatest toxicity. We identified 62 intersecting targets, with PTGS2, MMP9, and ESR1 being central in the PPI network. Transcriptomic analysis revealed 1,077 differentially expressed genes (DEGs), highlighting associated biological processes and pathways. The random forest model identified 20 core genes, with 9 significantly differentially expressed in the PFAS-treated group. Molecular docking suggested potential interactions between the compounds and core targets, and molecular dynamics simulations further supported the stability of the complexes under physiological conditions. This study provides valuable insights into the neurotoxic mechanisms of PFAS, enhancing our understanding of their impact on the nervous system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyf完成签到,获得积分10
刚刚
JinghongLiu关注了科研通微信公众号
刚刚
乳酸菌小面包完成签到,获得积分10
1秒前
Nefelibata完成签到,获得积分10
3秒前
巴巴bow发布了新的文献求助10
3秒前
曾经的匪发布了新的文献求助20
3秒前
4秒前
ZM完成签到 ,获得积分0
7秒前
弗洛伊德完成签到 ,获得积分10
7秒前
22222应助24先生采纳,获得30
8秒前
852应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得30
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
粥粥精应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
12秒前
15秒前
李俊桀发布了新的文献求助10
17秒前
20秒前
anuk完成签到 ,获得积分10
20秒前
lalalalalallala完成签到,获得积分10
21秒前
lruri张完成签到,获得积分10
21秒前
Limerencia完成签到,获得积分10
22秒前
xiuxiuzhang完成签到 ,获得积分10
23秒前
23秒前
chaos完成签到 ,获得积分10
23秒前
超级微笑完成签到 ,获得积分10
24秒前
轩哥完成签到 ,获得积分20
24秒前
dew应助Wangboyang采纳,获得10
26秒前
28秒前
29秒前
30秒前
QOP应助李俊桀采纳,获得10
32秒前
zzzyyy应助那英东采纳,获得20
34秒前
炙热迎波发布了新的文献求助10
34秒前
浓浓完成签到 ,获得积分10
34秒前
34秒前
34秒前
doctor2023完成签到,获得积分10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5030057
求助须知:如何正确求助?哪些是违规求助? 4265319
关于积分的说明 13297396
捐赠科研通 4073965
什么是DOI,文献DOI怎么找? 2228218
邀请新用户注册赠送积分活动 1236907
关于科研通互助平台的介绍 1161159