Dual-stage deep-learning method for glaucoma severity classification based on multiscale feature fusion

青光眼 人工智能 计算机科学 特征(语言学) 特征提取 模式识别(心理学) 精确性和召回率 深度学习 阶段(地层学) 机器学习 医学 眼科 语言学 生物 哲学 古生物学
作者
Mohammad J. M. Zedan,Siti Raihanah Abdani,Sufian A. Badawi,Mahmood Ghaleb Al-Bashayreh,Mohd Asyraf Zulkifley
出处
期刊:Experimental Eye Research [Elsevier]
卷期号:259: 110567-110567 被引量:1
标识
DOI:10.1016/j.exer.2025.110567
摘要

Glaucoma represents a chronic eye disease caused by progressive optic neuropathies that lead to visual field loss. Appropriate treatment necessitates early detection and precise assessment of disease severity. Accordingly, recent studies have demonstrated substantial efforts in the development of automated glaucoma classification methods. However, the accurate identification of glaucoma stages remains challenging given that most methods rely on single-stage pathways and single-scale feature extraction, which limit their capability to capture overlapping anatomical features. This challenge is further compounded by the scarcity of reliable datasets that represent the stages of disease progression. In response, this work proposed the use of glaucoma multiscale feature fusion network (GMFF-Net), which represents a novel two-stage framework for the classification of glaucoma severity. The first stage of GMFF-Net employs two parallel encoder heads designed to extract structural and anatomical information. Each head integrates multiscale feature extraction and hybrid attention mechanisms to capture variations across receptive fields while emphasizing clinically relevant regions. The resulting feature maps are then adaptively combined using the proposed fusion modules, whose outputs are passed to the deep classification head in the second stage for disease severity classification. Systematic experiments demonstrated the high efficiency of GMFF-Net in the classification of glaucoma stages and its superiority over seven cutting-edge classification models. It achieved an accuracy of 92.822 %, a precision of 0.9326, a recall of 0.9174, and an F1 score of 0.9296 using the Ibn Al-Haitham dataset. These results demonstrate the capability of the dual-stage framework to extract fine-grained features and provides a suitable solution for screening numerous complex diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘世敏完成签到,获得积分10
1秒前
江南之南发布了新的文献求助10
1秒前
Hello应助追寻的问玉采纳,获得10
1秒前
king完成签到 ,获得积分10
1秒前
1秒前
WQX001X完成签到 ,获得积分10
2秒前
充电宝应助nnnnn采纳,获得10
2秒前
2秒前
wroy发布了新的文献求助10
3秒前
qjq琪完成签到 ,获得积分10
3秒前
umi发布了新的文献求助30
4秒前
shizi发布了新的文献求助10
4秒前
6秒前
6秒前
zx2025发布了新的文献求助10
7秒前
8秒前
may完成签到,获得积分10
8秒前
8秒前
香蕉觅云应助赵永鹏采纳,获得10
8秒前
善学以致用应助1aa采纳,获得30
9秒前
busyding发布了新的文献求助10
9秒前
ding应助账号本人采纳,获得10
10秒前
yhy完成签到 ,获得积分10
11秒前
11秒前
辛勤的刺猬完成签到 ,获得积分10
11秒前
13秒前
qiguanmo关注了科研通微信公众号
13秒前
量子星尘发布了新的文献求助10
13秒前
zx2025完成签到,获得积分10
13秒前
14秒前
华仔应助HLT采纳,获得10
15秒前
徐少杰完成签到,获得积分10
15秒前
nnnnn发布了新的文献求助10
16秒前
17秒前
dynamoo发布了新的文献求助10
17秒前
18秒前
江南之南发布了新的文献求助10
18秒前
华仔应助大胆诗云采纳,获得10
21秒前
cslghe发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520926
求助须知:如何正确求助?哪些是违规求助? 4612521
关于积分的说明 14533938
捐赠科研通 4550069
什么是DOI,文献DOI怎么找? 2493369
邀请新用户注册赠送积分活动 1474567
关于科研通互助平台的介绍 1446106