First Report of Colletotrichum fructicola Causing Anthracnose on Peanut (Arachis hypogaea) in China

生物 叶斑病 马铃薯葡萄糖琼脂 花生 斑点 分生孢子 园艺 橙色(颜色) 黑点 播种 炭疽菌 植物 孢子 琼脂 遗传学 细菌
作者
Jiali Gong,Dianjun Sun,Nengfei Bian,Rongqi Wang,Xing Wang,Xiaojun Wang
出处
期刊:Plant Disease [Scientific Societies]
卷期号:107 (9): 2879-2879
标识
DOI:10.1094/pdis-10-22-2480-pdn
摘要

Peanut (Arachis hypogaea L.) is an important cash crop and oil crop around the world. In August 2021, symptoms of leaf spot were found on nearly 50% of peanut plants in the peanut planting base of Xuzhou Academy of Agriculture Sciences, Jiangsu, China. Symptoms began as small, round or oval, dark brown spots on the leaf. As the spot expanded, the center of the spot became gray to light brown and the spot was covered with small black dots. Fifteen leaves with typical symptoms were randomly collected from fifteen plants in three fields about a kilometer apart from each other. Leaf pieces (5 × 5 mm) were cut from the junction part of diseased and healthy leaf tissue, sterilized with 75% ethanol for 30 s and 5% NaClO for 30 s, washed 3 times with sterile water, placed on full strength potato dextrose agar (PDA) and incubated at 28°C in darkness. Five days after incubation, 12 isolates were obtained. Fungal colonies were white to gray on the upper surface and orange to gray on the reverse side. Conidia were single-celled, cylindrical and colorless after maturation, and were 12 - 16.5 × 4.5 - 5.5 μm (n = 50) in size. Ascospores were one-celled, hyaline, with tapering ends and one or two large guttulates at the center, and measured 9.4 - 21.5 × 4.3 - 6.4 μm (n = 50). Based on morphological characteristics, the fungi were preliminarily identified as Colletotrichum fructicola (Prihastuti et al. 2009; Rojas et al. 2010). Single spore isolates were cultured on PDA medium and two representative strains (Y18-3 and Y23-4) were selected for DNA extraction. The internal transcribed spacer (ITS) rDNA region, partial actin gene (ACT), partial calmodulin gene (CAL), partial chitin synthase gene (CHS), partial glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH), and partial beta-tubulin 2 gene (TUB2) were amplified. The nucleotide sequences were submitted to Genbank (accession numbers of strain Y18-3: ITS: ON619598; ACT: ON638735; CAL: ON773430; CHS: ON773432; GAPDH: ON773436; TUB2: ON773434; accession numbers of strain Y23-4: ITS: ON620093; ACT: ON773438; CAL: ON773431; CHS: ON773433; GAPDH: ON773437; TUB2: ON773435). The phylogenetic tree was constructed using MEGA 7 based on the tandem of six genes (ITS-ACT-CAL-CHS-GAPDH-TUB2). The result showed that isolates Y18-3 and Y23-4 reside in the clade of C. fructicola species. To determine pathogenicity, conidial suspensions (107/mL) of isolate Y18-3 and Y23-4 were sprayed on ten 30-day-old healthy peanut seedlings per isolate. Five control plants were sprayed with sterile water. All plants were kept moist at 28°C in the dark (> 85% RH) for 48 h and then transferred to a moist chamber at 25°C with a 14-h photoperiod. After two weeks, typical anthracnose symptoms similar to those observed in the field appeared on leaves of inoculated plants, whereas controls remained asymptomatic. C. fructicola was re-isolated from symptomatic leaves but not from controls. Koch's postulates verified that C. fructicola was the pathogen of peanut anthracnose. C. fructicola is a well-known fungus causing anthracnose on many plant species worldwide. In recent years, new plant species infected by C. fructicola have been reported, like cherry, water hyacinth and Phoebe sheareri (Tang et al. 2021; Huang et al. 2021; Huang et al. 2022). To our knowledge, this is the first report of C. fructicola causing peanut anthracnose in China. Thus, it is recommended to pay close attention and take necessary prevention and control measures against potential spread of peanut anthracnose in China. .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Denning完成签到,获得积分10
5秒前
5秒前
10秒前
儒雅沛凝完成签到 ,获得积分10
15秒前
尚影芷完成签到,获得积分10
15秒前
15秒前
16秒前
19秒前
努力向前看完成签到,获得积分10
23秒前
三金脚脚完成签到 ,获得积分10
24秒前
cheney完成签到,获得积分10
30秒前
虚心的半梅完成签到,获得积分10
33秒前
fcf335gj完成签到,获得积分10
34秒前
KingWave完成签到 ,获得积分10
34秒前
thousandlong完成签到,获得积分10
42秒前
领导范儿应助哼哼采纳,获得10
48秒前
Bsisoy完成签到,获得积分10
48秒前
周二完成签到 ,获得积分10
50秒前
韭菜盒子完成签到,获得积分20
54秒前
实验报告没写完完成签到,获得积分10
57秒前
Yuuuu完成签到 ,获得积分10
1分钟前
积极平蓝完成签到 ,获得积分10
1分钟前
YU完成签到 ,获得积分10
1分钟前
达拉崩吧吧咂嘿完成签到 ,获得积分10
1分钟前
luluyang完成签到 ,获得积分10
1分钟前
达拉崩吧吧咂嘿关注了科研通微信公众号
1分钟前
小喵完成签到 ,获得积分10
1分钟前
liyiliyi117完成签到,获得积分10
1分钟前
有你有我完成签到,获得积分10
1分钟前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
1分钟前
微詹完成签到,获得积分10
1分钟前
聪明小丸子完成签到,获得积分10
1分钟前
田心齐完成签到 ,获得积分10
1分钟前
勤奋小懒猪完成签到 ,获得积分10
1分钟前
Zheng完成签到 ,获得积分10
1分钟前
御风完成签到,获得积分10
1分钟前
三千完成签到 ,获得积分0
1分钟前
灰鲸完成签到 ,获得积分20
1分钟前
研友_VZG7GZ应助奥里给采纳,获得10
1分钟前
龙阔完成签到 ,获得积分10
1分钟前
高分求助中
A pan-cancer cuproptosis signature predicting immunotherapy response and prognosis 1500
Straight Talk about ADHD in Girls: How to Help Your Daughter Thrive 1100
Lorenz Luthi - The Regional Cold Wars in Europe, East Asia, and the Middle East Crucial Periods and Turning Points 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
Full waveform acoustic data processing 500
More Activities for Teaching Positive Psychology A Guide for Instructors 330
The Chicago Manual of Style, 18th Edition 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2887854
求助须知:如何正确求助?哪些是违规求助? 2508055
关于积分的说明 6789646
捐赠科研通 2183642
什么是DOI,文献DOI怎么找? 1160876
版权声明 586654
科研通“疑难数据库(出版商)”最低求助积分说明 569391