In silico modeling-based new alternative methods to predict drug and herb-induced liver injury: A review

生物信息学 可解释性 肝损伤 机器学习 计算机科学 数量结构-活动关系 药物发现 人工智能 药品 不良结局途径 肝毒性 药物开发 深度学习 计算生物学 数据挖掘 生物信息学 药理学 医学 生物 基因 内科学 生物化学 毒性
作者
Hyun Kil Shin,Ruili Huang,Minjun Chen
出处
期刊:Food and Chemical Toxicology [Elsevier BV]
卷期号:179: 113948-113948 被引量:14
标识
DOI:10.1016/j.fct.2023.113948
摘要

New approach methods (NAMs) have been developed to predict a wide range of toxicities through innovative technologies. Liver injury is one of the most extensively studied endpoints due to its severity and frequency, occurring among populations that consume drugs or dietary supplements. In this review, we focus on recent developments of in silico modeling for liver injury prediction using deep learning and in vitro data based on adverse outcome pathways (AOPs). Despite these models being mainly developed using datasets generated from drug-like molecules, they were also applied to the prediction of hepatotoxicity caused by herbal products. As deep learning has achieved great success in many different fields, advanced machine learning algorithms have been actively applied to improve the accuracy of in silico models. Additionally, the development of liver AOPs, combined with big data in toxicology, has been valuable in developing in silico models with enhanced predictive performance and interpretability. Specifically, one approach involves developing structure-based models for predicting molecular initiating events of liver AOPs, while others use in vitro data with structure information as model inputs for making predictions. Even though liver injury remains a difficult endpoint to predict, advancements in machine learning algorithms and the expansion of in vitro databases with relevant biological knowledge have made a huge impact on improving in silico modeling for drug-induced liver injury prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃柚子完成签到,获得积分10
1秒前
XiaoXU发布了新的文献求助10
1秒前
狗蛋发布了新的文献求助20
1秒前
大模型应助lky0119采纳,获得10
1秒前
2秒前
wanci应助gapper采纳,获得10
3秒前
3秒前
3秒前
changping应助十八采纳,获得10
4秒前
changping应助十八采纳,获得10
4秒前
卡皮巴拉完成签到 ,获得积分10
4秒前
文静元霜完成签到,获得积分10
5秒前
笑着流泪完成签到,获得积分20
5秒前
wangxw完成签到,获得积分10
5秒前
yuki发布了新的文献求助10
5秒前
leeOOO发布了新的文献求助10
6秒前
6秒前
hrzmlily完成签到,获得积分10
6秒前
鱼丸发布了新的文献求助10
7秒前
打打应助5433采纳,获得10
7秒前
8秒前
8秒前
yinguo关注了科研通微信公众号
8秒前
程雯慧发布了新的文献求助10
9秒前
科目三应助corner采纳,获得10
9秒前
winkin完成签到,获得积分10
10秒前
uwasa完成签到,获得积分10
10秒前
应绝施发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
CodeCraft应助yuki采纳,获得10
12秒前
WissF-完成签到,获得积分10
12秒前
小小威完成签到,获得积分10
13秒前
13秒前
JamesPei应助Hilda007采纳,获得10
14秒前
123456hhh完成签到,获得积分10
14秒前
15秒前
炙热乘云发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061662
求助须知:如何正确求助?哪些是违规求助? 4285676
关于积分的说明 13355244
捐赠科研通 4103562
什么是DOI,文献DOI怎么找? 2246765
邀请新用户注册赠送积分活动 1252500
关于科研通互助平台的介绍 1183346