Biomarker Discovery in Rare Malignancies: Development of a miRNA Signature for RDEB-cSCC

小RNA 生物标志物 计算生物学 癌症 微泡 计算机科学 生物信息学 肿瘤科 医学 内科学 生物 基因 生物化学
作者
R. Zauner,Monika Wimmer,Sabine Atzmueller,Johannes Proell,Norbert Niklas,Michael Ablinger,Manuela Reisenberger,Thomas Lettner,Julia Illmer,Sonja Dorfer,Ulrich Koller,Christina Guttmann-Gruber,Josefina Piñón Hofbauer,Johann W. Bauer,Verena Wally
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:15 (13): 3286-3286
标识
DOI:10.3390/cancers15133286
摘要

Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gy1991完成签到,获得积分10
刚刚
如意草丛发布了新的文献求助10
1秒前
1秒前
1秒前
CHZBH发布了新的文献求助10
1秒前
2秒前
2秒前
科研通AI2S应助dd采纳,获得10
2秒前
璇子发布了新的文献求助10
2秒前
2秒前
Orange应助VDC采纳,获得10
2秒前
2秒前
超级完成签到,获得积分10
3秒前
小羿发布了新的文献求助10
4秒前
gUssan完成签到,获得积分10
4秒前
相濡以沫发布了新的文献求助10
4秒前
淡淡桐完成签到,获得积分10
5秒前
鳗鱼语风完成签到,获得积分10
5秒前
jxr完成签到,获得积分10
5秒前
科研通AI5应助孙颂尧采纳,获得10
5秒前
洁净乐松发布了新的文献求助10
6秒前
采1应助多情捕采纳,获得20
6秒前
科研助手6应助粥粥爱糊糊采纳,获得10
6秒前
西早完成签到 ,获得积分10
6秒前
6秒前
7秒前
luckily发布了新的文献求助20
7秒前
1233330发布了新的文献求助10
7秒前
高兴吐司发布了新的文献求助10
7秒前
酷波er应助失眠夏山采纳,获得10
8秒前
霸气的老虎完成签到,获得积分10
8秒前
8秒前
喵小猫完成签到,获得积分10
9秒前
9秒前
huohuo143完成签到,获得积分10
9秒前
Jasper应助菠萝吹雪采纳,获得10
9秒前
标致的世立完成签到 ,获得积分10
10秒前
11秒前
ppjkq1完成签到,获得积分10
11秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786442
求助须知:如何正确求助?哪些是违规求助? 3332205
关于积分的说明 10254435
捐赠科研通 3047585
什么是DOI,文献DOI怎么找? 1672602
邀请新用户注册赠送积分活动 801424
科研通“疑难数据库(出版商)”最低求助积分说明 760191