Convolutional Neural Network With Multihead Attention for Human Activity Recognition

计算机科学 卷积神经网络 人工智能 卷积码 模式识别(心理学) 语音识别 解码方法 自然语言处理 算法
作者
Tan-Hsu Tan,Yang-Lang Chang,Jun-Rong Wu,Yung-Fu Chen,Mohammad Alkhaleefah
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 3032-3043 被引量:24
标识
DOI:10.1109/jiot.2023.3294421
摘要

Convolutional neural networks (CNNs) have shown great promise in human activity recognition, but long-term dependencies in time series data can be difficult to capture using standard CNNs. This study introduces a new CNN architecture that incorporates a multi-head attention mechanism (CNN-MHA) to address this challenge. This mechanism is composed of several attention heads, each independently calculating attention weights for distinct segments of the input. The attention head outputs are then concatenated and processed through a fully connected layer to produce the final attention representation. The multi-head attention mechanism allows the network to focus on relevant features and maintain long-term dependencies in the input data. The proposed model is evaluated on the physical activity monitoring for aging people dataset (PAMAP2) from the UCI machine learning repository, which is preprocessed by cleaning, normalization, segmentation, and reshaping before splitting into training, validation, and testing sets. The experimental results demonstrate that the CNN-MHA model outperforms existing models, achieving F1-score of 95.7%. Particularly, the multi-head attention mechanism significantly improves the model's ability to recognize complex activity patterns. Furthermore, our model attained an average inference latency of 0.304 seconds, which can be crucial in real-time applications. The findings clearly demonstrate the substantial promise of the proposed CNN-MHA architecture for optimizing human activity recognition tasks, offering a powerful tool for advancing the state-of-the-art in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaoyao发布了新的文献求助10
1秒前
木流留马发布了新的文献求助10
2秒前
3秒前
科研通AI6应助好好采纳,获得10
3秒前
汉堡包应助连不言采纳,获得10
3秒前
小二郎应助yanqiu采纳,获得30
3秒前
4秒前
hcy完成签到,获得积分20
4秒前
ctyyyu发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
LEO发布了新的文献求助10
7秒前
9秒前
充电宝应助兔宝宝采纳,获得10
9秒前
乐乐应助潇洒的怜蕾采纳,获得10
9秒前
Hearing胡发布了新的文献求助10
10秒前
10秒前
Verity应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Verity应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
trumning应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
专注的问寒应助科研通管家采纳,获得150
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
trumning应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
小李应助科研通管家采纳,获得10
11秒前
专注的问寒应助科研通管家采纳,获得150
11秒前
慕青应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
小李应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743020
求助须知:如何正确求助?哪些是违规求助? 5412098
关于积分的说明 15346567
捐赠科研通 4884017
什么是DOI,文献DOI怎么找? 2625516
邀请新用户注册赠送积分活动 1574377
关于科研通互助平台的介绍 1531274