Using Machine Learning of Online Expression to Explain Recovery Trajectories: Content Analytic Approach to Studying a Substance Use Disorder Forum

同行支持 在线讨论 社会化媒体 计算机科学 内容分析 心理学 人工智能 机器学习 医学教育 应用心理学 万维网 医学 精神科 社会科学 社会学
作者
Ellie Fan Yang,Rachel Kornfield,Yan Liu,Ming‐Yuan Chih,Prathusha K Sarma,David H. Gustafson,John J. Curtin,Dhavan V. Shah
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e45589-e45589 被引量:2
标识
DOI:10.2196/45589
摘要

Smartphone-based apps are increasingly used to prevent relapse among those with substance use disorders (SUDs). These systems collect a wealth of data from participants, including the content of messages exchanged in peer-to-peer support forums. How individuals self-disclose and exchange social support in these forums may provide insight into their recovery course, but a manual review of a large corpus of text by human coders is inefficient.The study sought to evaluate the feasibility of applying supervised machine learning (ML) to perform large-scale content analysis of an online peer-to-peer discussion forum. Machine-coded data were also used to understand how communication styles relate to writers' substance use and well-being outcomes.Data were collected from a smartphone app that connects patients with SUDs to online peer support via a discussion forum. Overall, 268 adult patients with SUD diagnoses were recruited from 3 federally qualified health centers in the United States beginning in 2014. Two waves of survey data were collected to measure demographic characteristics and study outcomes: at baseline (before accessing the app) and after 6 months of using the app. Messages were downloaded from the peer-to-peer forum and subjected to manual content analysis. These data were used to train supervised ML algorithms using features extracted from the Linguistic Inquiry and Word Count (LIWC) system to automatically identify the types of expression relevant to peer-to-peer support. Regression analyses examined how each expression type was associated with recovery outcomes.Our manual content analysis identified 7 expression types relevant to the recovery process (emotional support, informational support, negative affect, change talk, insightful disclosure, gratitude, and universality disclosure). Over 6 months of app use, 86.2% (231/268) of participants posted on the app's support forum. Of these participants, 93.5% (216/231) posted at least 1 message in the content categories of interest, generating 10,503 messages. Supervised ML algorithms were trained on the hand-coded data, achieving F1-scores ranging from 0.57 to 0.85. Regression analyses revealed that a greater proportion of the messages giving emotional support to peers was related to reduced substance use. For self-disclosure, a greater proportion of the messages expressing universality was related to improved quality of life, whereas a greater proportion of the negative affect expressions was negatively related to quality of life and mood.This study highlights a method of natural language processing with potential to provide real-time insights into peer-to-peer communication dynamics. First, we found that our ML approach allowed for large-scale content coding while retaining moderate-to-high levels of accuracy. Second, individuals' expression styles were associated with recovery outcomes. The expression types of emotional support, universality disclosure, and negative affect were significantly related to recovery outcomes, and attending to these dynamics may be important for appropriate intervention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助高贵熊猫采纳,获得10
刚刚
谷晋羽完成签到,获得积分10
刚刚
1秒前
Kin发布了新的文献求助10
1秒前
1秒前
年少完成签到,获得积分10
2秒前
lucas驳回了Lucas应助
2秒前
34101127发布了新的文献求助10
3秒前
背后皮卡丘完成签到,获得积分10
4秒前
乐观的镜子完成签到,获得积分10
5秒前
CipherSage应助yyt采纳,获得30
7秒前
Eternal发布了新的文献求助30
7秒前
科目三应助太想进部了采纳,获得10
8秒前
8秒前
CC关闭了CC文献求助
10秒前
naxiaokang发布了新的文献求助10
10秒前
花痴的易真完成签到,获得积分10
11秒前
zhang005on完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
杰jj发布了新的文献求助10
15秒前
乐乐乐乐乐乐应助Yara采纳,获得10
16秒前
18秒前
Wency发布了新的文献求助10
19秒前
高贵熊猫应助琳琳采纳,获得30
20秒前
匡佐英发布了新的文献求助10
21秒前
22秒前
xunxunmimi发布了新的文献求助200
23秒前
23秒前
ztt发布了新的文献求助10
25秒前
小花排草应助和谐忆翠采纳,获得20
25秒前
26秒前
26秒前
hhhh_xt完成签到,获得积分10
26秒前
dengdeng完成签到 ,获得积分10
27秒前
华仔应助杰jj采纳,获得10
27秒前
缓慢追命完成签到,获得积分10
27秒前
28秒前
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170464
求助须知:如何正确求助?哪些是违规求助? 3706072
关于积分的说明 11693885
捐赠科研通 3392155
什么是DOI,文献DOI怎么找? 1860552
邀请新用户注册赠送积分活动 920377
科研通“疑难数据库(出版商)”最低求助积分说明 832674