Multi-modal global- and local- feature interaction with attention-based mechanism for diagnosis of Alzheimer’s disease

机制(生物学) 特征(语言学) 情态动词 计算机科学 疾病 人工智能 医学 语言学 物理 化学 病理 量子力学 哲学 高分子化学
作者
Nana Jia,Tong Jia,Zhao Li,Bowen Ma,Zheyi Zhu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:95: 106404-106404 被引量:3
标识
DOI:10.1016/j.bspc.2024.106404
摘要

Alzheimer's disease is a complex neurodegenerative disease. Subjects with Mild Cognitive Impairment will progress to Alzheimer's disease, thus how to effectively diagnose Alzheimer's disease or Mild Cognitive Impairment using the clinical tabular data and Magnetic Resonance Images of the brain together has been a major concern of researches. Deep multi-modal learning-based methods can improve Alzheimer's disease diagnostic accuracy compared to the single modality-based methods. However, most existing multi-modal fusion methods only focus on learning global features fusion from image and clinical tabular data by concatenation, lacking the ability to jointly analyze and integrate global–local information of image with clinical tabular data. To address these limitations, this paper explored a novel Multi-Modal Global–Local Fusion method to perform multi-modal Alzheimer's disease classification through 3D Magnetic Resonance Images and clinical tabular data. Specifically, we adopt a global module that uses concatenation to fuse features to learn the global information. Moreover, we design an attention-based local module which encourages clinical tabular features to guide the learning of local 3D Magnetic Resonance Images information, thus, enhancing the power of features fusion from each modality. Our method considers both global and local information of the two modalities for multi-modal fusion. Experiment results show that our method in this paper is highly effective in combining 3D Magnetic Resonance Images and clinical tabular data for Alzheimer's disease classification with accuracy of 86.34% and 86.77% in ADNI and OASIS-1 datasets respectively, which outperforms the current state-of-the-art methods. Detailed ablation experiments are conducted to highlight the contribution of various components. code is available at: https://github.com/nananana0701/MMGLF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiemo_111完成签到,获得积分10
2秒前
所所应助啊唔采纳,获得10
6秒前
大模型应助潇洒的小蕾采纳,获得10
6秒前
acadedog发布了新的文献求助10
7秒前
酷波er应助123采纳,获得10
8秒前
8秒前
织诗成锦完成签到,获得积分10
10秒前
ppxx驳回了桐桐应助
13秒前
15秒前
DAN_发布了新的文献求助10
16秒前
冷静如柏完成签到,获得积分10
18秒前
stk完成签到,获得积分10
18秒前
尚可完成签到 ,获得积分10
19秒前
啊唔发布了新的文献求助10
22秒前
22秒前
沫柠完成签到 ,获得积分10
25秒前
代代完成签到,获得积分10
26秒前
28秒前
29秒前
渺渺发布了新的文献求助10
33秒前
ppxx发布了新的文献求助10
33秒前
34秒前
36秒前
zz321完成签到,获得积分10
36秒前
小二郎应助hysmoment采纳,获得10
37秒前
CyrusSo524给Ruiii的求助进行了留言
38秒前
123发布了新的文献求助10
39秒前
AJAJ发布了新的文献求助10
39秒前
42秒前
万能图书馆应助Anoxia采纳,获得10
44秒前
justsoso完成签到,获得积分10
45秒前
临诗发布了新的文献求助50
45秒前
啊唔完成签到 ,获得积分10
49秒前
魏你大爷发布了新的文献求助10
49秒前
50秒前
PTDRA发布了新的文献求助10
52秒前
Wing发布了新的文献求助10
55秒前
55秒前
Bearbiscuit完成签到,获得积分10
57秒前
bbdx完成签到 ,获得积分10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385