Infrared and visible image fusion network based on low-light image enhancement and attention mechanism

人工智能 计算机科学 特征(语言学) 计算机视觉 块(置换群论) 模式识别(心理学) 自编码 卷积神经网络 深度学习 数学 几何学 语言学 哲学
作者
Jinbo Lu,Zhen Pei,Jinling Chen,Kunyu Tan,Qi Ran,Hongyan Wang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4494766/v1
摘要

Abstract The purpose of infrared and visible image fusion is to combine the information of different spectral imaging to improve the visual effect and information richness of the image. However, the visible images collected by the existing public datasets are often dim, and the fused images cannot fully depict the texture details and structure in the visible images. Moreover, most deep learning-based methods fail to consider the global information of input feature maps during the convolutional layer feature extraction process, which leads to additional information loss. To address these issues, this paper proposes an auto-encoder network that integrates low-light image enhancement with an adaptive global attention mechanism. First, a sharpening-smoothing balance model for low-light image enhancement is designed based on the Retinex model. Enhance the structure, texture, and contrast information of low-light images by adjusting the balance index of the model. Then, an adaptive global attention block is added to the auto-encoder network, which enhances features with important information by adaptively learning the weights of each channel in the input feature map, thereby improving the network's feature expression capabilities. Finally, in the fusion part of the auto-encoder network, a deep spatial attention fusion block is proposed to maintain the texture details in the visible image and highlight the thermal target information in the infrared image. Our experiments are validated on MSRS, LLVIP, and TNO datasets. Both qualitative and quantitative analyses demonstrated that our method achieved superior comprehensive performance compared to the state-of-the-art image fusion algorithms of recent years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好久不见发布了新的文献求助50
2秒前
2秒前
MLR完成签到,获得积分20
2秒前
3秒前
4秒前
MLR发布了新的文献求助10
7秒前
zhul发布了新的文献求助30
7秒前
yuaner发布了新的文献求助10
8秒前
隐形曼青应助yinshaoyu21采纳,获得10
8秒前
9秒前
12秒前
12秒前
上官若男应助大佬采纳,获得10
13秒前
13秒前
13秒前
眼睛大的剑心完成签到 ,获得积分10
16秒前
as完成签到,获得积分10
16秒前
masterwill发布了新的文献求助10
16秒前
Eva发布了新的文献求助30
16秒前
17秒前
英姑应助ttssooe采纳,获得10
18秒前
忧郁难胜完成签到,获得积分10
18秒前
ksduoiwex完成签到,获得积分10
19秒前
19秒前
20秒前
轻雨发布了新的文献求助10
20秒前
ksduoiwex发布了新的文献求助10
22秒前
润森完成签到,获得积分10
22秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得30
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
24秒前
闪闪的YOSH完成签到,获得积分10
26秒前
科目三应助Violet采纳,获得10
26秒前
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557