An Online Housing Reputation Assessment Framework Based on Text Mining and Visualization Technologies

声誉 可视化 数据科学 计算机科学 万维网 数据挖掘 政治学 法学
作者
Botao Zhong,Jun Tian,Xing Pan,Luoxin Shen
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (8) 被引量:1
标识
DOI:10.1061/jcemd4.coeng-14669
摘要

Learning from online comments is essential for enhancing understanding and improving online housing reputation (OHR). However, two significant issues require attention. First, analyzing online comments for reputation information extraction is a labor-intensive and time-consuming task. Second, most existing online housing information platforms lack effective visual aids, merely presenting the average comment ratings or listing comment texts without secondary interpretation. To address these challenges, this study proposes an OHR assessment framework based on text mining and visualization technologies. This study first evaluates the performance of eight sentiment analysis models for analyzing housing comments, and the attention-based BiLSTM model achieved the highest accuracy (83.57%). Additionally, a housing attribute ontology is constructed to reveal eight critical attributes influencing OHR. Finally, a reputation visualization scheme is designed to comprehensively present OHR. A case study for analyzing online comments from three construction enterprises reveals the advantages and feasibility of the proposed framework for assessing OHR. This study contributes to the body of knowledge by establishing the connection between housing comments and OHR, greatly advancing the research in the construction domain's reputation management. Furthermore, OHR analysis can facilitate decision making optimization for both consumers and managers, which has theoretical and practical significance for the healthy and sustainable development of the online housing market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
小林发布了新的文献求助10
6秒前
六月六发布了新的文献求助50
7秒前
内向凝芙完成签到,获得积分10
9秒前
研友_VZG7GZ应助pcr采纳,获得10
10秒前
aero完成签到 ,获得积分10
11秒前
李健应助eyou采纳,获得10
14秒前
14秒前
科研通AI5应助呆萌的丹妗采纳,获得10
15秒前
你要学好完成签到 ,获得积分10
16秒前
星空_完成签到 ,获得积分10
16秒前
16秒前
zwy完成签到 ,获得积分10
18秒前
18秒前
qqqq发布了新的文献求助10
19秒前
kekejiang发布了新的文献求助10
20秒前
21秒前
wcf发布了新的文献求助10
21秒前
21秒前
pcr发布了新的文献求助10
23秒前
25秒前
滕侑林发布了新的文献求助10
26秒前
26秒前
chen发布了新的文献求助30
27秒前
178862708完成签到 ,获得积分10
28秒前
李振华发布了新的文献求助10
29秒前
天天快乐应助小吕快跑采纳,获得10
29秒前
29秒前
安康完成签到,获得积分10
29秒前
tanglu发布了新的文献求助10
29秒前
30秒前
sam完成签到,获得积分10
30秒前
pcr163应助科研通管家采纳,获得30
31秒前
李健应助科研通管家采纳,获得10
31秒前
pcr163应助科研通管家采纳,获得30
31秒前
搜集达人应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784481
求助须知:如何正确求助?哪些是违规求助? 3329665
关于积分的说明 10242830
捐赠科研通 3045021
什么是DOI,文献DOI怎么找? 1671569
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391