Detection and Localization of Spine Disorders from Plain Radiography

X线平片 脊柱(分子生物学) 射线照相术 口腔正畸科 医学 放射科 生物 生物信息学
作者
İlkay Yıldız,Diana Yeritsyan,Edward K. Rodriguez,Jim S. Wu,Ara Nazarian,Ashkan Vaziri
标识
DOI:10.1007/s10278-024-01175-x
摘要

Spine disorders can cause severe functional limitations, including back pain, decreased pulmonary function, and increased mortality risk. Plain radiography is the first-line imaging modality to diagnose suspected spine disorders. Nevertheless, radiographical appearance is not always sufficient due to highly variable patient and imaging parameters, which can lead to misdiagnosis or delayed diagnosis. Employing an accurate automated detection model can alleviate the workload of clinical experts, thereby reducing human errors, facilitating earlier detection, and improving diagnostic accuracy. To this end, deep learning-based computer-aided diagnosis (CAD) tools have significantly outperformed the accuracy of traditional CAD software. Motivated by these observations, we proposed a deep learning-based approach for end-to-end detection and localization of spine disorders from plain radiographs. In doing so, we took the first steps in employing state-of-the-art transformer networks to differentiate images of multiple spine disorders from healthy counterparts and localize the identified disorders, focusing on vertebral compression fractures (VCF) and spondylolisthesis due to their high prevalence and potential severity. The VCF dataset comprised 337 images, with VCFs collected from 138 subjects and 624 normal images collected from 337 subjects. The spondylolisthesis dataset comprised 413 images, with spondylolisthesis collected from 336 subjects and 782 normal images collected from 413 subjects. Transformer-based models exhibited 0.97 Area Under the Receiver Operating Characteristic Curve (AUC) in VCF detection and 0.95 AUC in spondylolisthesis detection. Further, transformers demonstrated significant performance improvements against existing end-to-end approaches by 4–14% AUC (p-values < 10−13) for VCF detection and by 14–20% AUC (p-values < 10−9) for spondylolisthesis detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DrWang完成签到 ,获得积分20
2秒前
笨笨千亦发布了新的文献求助10
3秒前
4秒前
6秒前
6秒前
不爱吃柠檬完成签到 ,获得积分10
6秒前
qingqing发布了新的文献求助10
6秒前
7秒前
7秒前
诺贝尔候选人完成签到 ,获得积分10
7秒前
8秒前
12秒前
Kawhichan发布了新的文献求助10
12秒前
笑一笑完成签到,获得积分10
13秒前
los_alpha关注了科研通微信公众号
13秒前
古月发布了新的文献求助10
14秒前
123456发布了新的文献求助10
14秒前
烟花应助qingqing采纳,获得10
17秒前
xiaoyao完成签到,获得积分10
18秒前
好好学习天天向上完成签到,获得积分10
18秒前
19秒前
伍子胥发布了新的文献求助30
20秒前
20秒前
zzz发布了新的文献求助10
21秒前
23秒前
檀恋爱完成签到,获得积分10
23秒前
蜗牛发布了新的文献求助10
24秒前
开心的依柔应助sherry221采纳,获得10
24秒前
26秒前
憨憨医生发布了新的文献求助200
27秒前
bkagyin应助下课闹闹采纳,获得10
28秒前
SciGPT应助muyan采纳,获得10
29秒前
30秒前
可以2完成签到,获得积分10
31秒前
JamesPei应助无敌的小利民采纳,获得10
33秒前
los_alpha发布了新的文献求助10
33秒前
蜗牛完成签到,获得积分10
34秒前
早起睡个回笼觉完成签到,获得积分10
34秒前
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4166078
求助须知:如何正确求助?哪些是违规求助? 3701799
关于积分的说明 11686525
捐赠科研通 3390307
什么是DOI,文献DOI怎么找? 1859261
邀请新用户注册赠送积分活动 919627
科研通“疑难数据库(出版商)”最低求助积分说明 832290