An energy-efficient semi-supervised approach for on-device photoplethysmogram signal quality assessment

光容积图 信号(编程语言) 能量(信号处理) 质量(理念) 计算机科学 医学 电子工程 生物医学工程 工程类 数学 电信 无线 物理 统计 量子力学 程序设计语言
作者
Mohammad Feli,Iman Azimi,Arman Anzanpour,Amir M. Rahmani,Pasi Liljeberg
出处
期刊:Smart Health [Elsevier BV]
卷期号:28: 100390-100390 被引量:21
标识
DOI:10.1016/j.smhl.2023.100390
摘要

Photoplethysmography (PPG) is a non-invasive technique used in wearable devices to measure vital signs (e.g., heart rate). The method is, however, highly susceptible to motion artifacts, which are inevitable in remote health monitoring. Noise reduces signal quality, leading to inaccurate decision-making. In addition, unreliable data collection and transmission waste a massive amount of energy on battery-powered devices. Studies in the literature have proposed PPG signal quality assessment (SQA) enabled by rule-based and machine learning (ML)-based methods. However, rule-based techniques were designed according to certain specifications, resulting in lower accuracy with unseen noise and artifacts. ML methods have mainly been developed to ensure high accuracy without considering execution time and device's energy consumption. In this paper, we propose a lightweight and energy-efficient PPG SQA method enabled by a semi-supervised learning strategy for edge devices. We first extract a wide range of features from PPG and then select the best features in terms of accuracy and latency. Second, we train a one-class support vector machine model to classify PPG signals into "Reliable" and "Unreliable" classes. We evaluate the proposed method in terms of accuracy, execution time, and energy consumption on two embedded devices, in comparison to five state-of-the-art PPG SQA methods. The methods are assessed using a PPG dataset collected via smartwatches from 46 individuals in free-living conditions. The proposed method outperforms the other methods by achieving an accuracy of 0.97 and a false positive rate of 0.01. It also provides the lowest latency and energy consumption compared to other ML-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuqingyun发布了新的文献求助10
刚刚
1秒前
PAN完成签到,获得积分20
3秒前
丘比特应助星空采纳,获得10
3秒前
3秒前
曾经雪瑶发布了新的文献求助10
3秒前
思源应助xinlong采纳,获得10
4秒前
别管我了应助咩咩采纳,获得30
4秒前
Genius发布了新的文献求助10
4秒前
林间有鹿完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Orange应助Nuyoah采纳,获得10
6秒前
Dr_Fang完成签到,获得积分10
7秒前
李健应助AmyDong采纳,获得10
7秒前
大模型应助机智的火采纳,获得10
7秒前
罗啦啦大大滴完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
123发布了新的文献求助30
10秒前
木且完成签到,获得积分10
10秒前
李健应助傲娇玉米采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
长情琦完成签到,获得积分10
11秒前
jackY1256应助科研通管家采纳,获得10
11秒前
我要留学应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
生动梦松应助科研通管家采纳,获得30
11秒前
田様应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703607
求助须知:如何正确求助?哪些是违规求助? 4070995
关于积分的说明 12588036
捐赠科研通 3771459
什么是DOI,文献DOI怎么找? 2083121
邀请新用户注册赠送积分活动 1110379
科研通“疑难数据库(出版商)”最低求助积分说明 988270