光容积图
信号(编程语言)
能量(信号处理)
质量(理念)
计算机科学
医学
电子工程
生物医学工程
工程类
数学
电信
无线
物理
统计
量子力学
程序设计语言
作者
Mohammad Feli,Iman Azimi,Arman Anzanpour,Amir M. Rahmani,Pasi Liljeberg
出处
期刊:Smart Health
[Elsevier BV]
日期:2023-03-20
卷期号:28: 100390-100390
被引量:21
标识
DOI:10.1016/j.smhl.2023.100390
摘要
Photoplethysmography (PPG) is a non-invasive technique used in wearable devices to measure vital signs (e.g., heart rate). The method is, however, highly susceptible to motion artifacts, which are inevitable in remote health monitoring. Noise reduces signal quality, leading to inaccurate decision-making. In addition, unreliable data collection and transmission waste a massive amount of energy on battery-powered devices. Studies in the literature have proposed PPG signal quality assessment (SQA) enabled by rule-based and machine learning (ML)-based methods. However, rule-based techniques were designed according to certain specifications, resulting in lower accuracy with unseen noise and artifacts. ML methods have mainly been developed to ensure high accuracy without considering execution time and device's energy consumption. In this paper, we propose a lightweight and energy-efficient PPG SQA method enabled by a semi-supervised learning strategy for edge devices. We first extract a wide range of features from PPG and then select the best features in terms of accuracy and latency. Second, we train a one-class support vector machine model to classify PPG signals into "Reliable" and "Unreliable" classes. We evaluate the proposed method in terms of accuracy, execution time, and energy consumption on two embedded devices, in comparison to five state-of-the-art PPG SQA methods. The methods are assessed using a PPG dataset collected via smartwatches from 46 individuals in free-living conditions. The proposed method outperforms the other methods by achieving an accuracy of 0.97 and a false positive rate of 0.01. It also provides the lowest latency and energy consumption compared to other ML-based methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI