已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An energy-efficient semi-supervised approach for on-device photoplethysmogram signal quality assessment

光容积图 信号(编程语言) 能量(信号处理) 质量(理念) 计算机科学 医学 电子工程 生物医学工程 工程类 数学 电信 无线 物理 统计 量子力学 程序设计语言
作者
Mohammad Feli,Iman Azimi,Arman Anzanpour,Amir M. Rahmani,Pasi Liljeberg
出处
期刊:Smart Health [Elsevier BV]
卷期号:28: 100390-100390 被引量:21
标识
DOI:10.1016/j.smhl.2023.100390
摘要

Photoplethysmography (PPG) is a non-invasive technique used in wearable devices to measure vital signs (e.g., heart rate). The method is, however, highly susceptible to motion artifacts, which are inevitable in remote health monitoring. Noise reduces signal quality, leading to inaccurate decision-making. In addition, unreliable data collection and transmission waste a massive amount of energy on battery-powered devices. Studies in the literature have proposed PPG signal quality assessment (SQA) enabled by rule-based and machine learning (ML)-based methods. However, rule-based techniques were designed according to certain specifications, resulting in lower accuracy with unseen noise and artifacts. ML methods have mainly been developed to ensure high accuracy without considering execution time and device's energy consumption. In this paper, we propose a lightweight and energy-efficient PPG SQA method enabled by a semi-supervised learning strategy for edge devices. We first extract a wide range of features from PPG and then select the best features in terms of accuracy and latency. Second, we train a one-class support vector machine model to classify PPG signals into "Reliable" and "Unreliable" classes. We evaluate the proposed method in terms of accuracy, execution time, and energy consumption on two embedded devices, in comparison to five state-of-the-art PPG SQA methods. The methods are assessed using a PPG dataset collected via smartwatches from 46 individuals in free-living conditions. The proposed method outperforms the other methods by achieving an accuracy of 0.97 and a false positive rate of 0.01. It also provides the lowest latency and energy consumption compared to other ML-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老虎皮发布了新的文献求助10
1秒前
2秒前
hahaha完成签到,获得积分10
3秒前
4秒前
上官若男应助xiao_J采纳,获得10
5秒前
SciGPT应助若有光采纳,获得10
6秒前
7秒前
林志伟完成签到 ,获得积分10
9秒前
晓晴完成签到,获得积分20
10秒前
11秒前
调皮小凡完成签到,获得积分10
12秒前
万能图书馆应助Ryy采纳,获得10
15秒前
17秒前
楚阔发布了新的文献求助10
23秒前
bkagyin应助动听的晓博采纳,获得10
24秒前
26秒前
月报月报完成签到,获得积分10
27秒前
芒果你真甜完成签到,获得积分10
27秒前
许许发布了新的文献求助10
28秒前
碧蓝香芦完成签到 ,获得积分10
30秒前
fr发布了新的文献求助10
33秒前
34秒前
动听的晓博完成签到,获得积分10
34秒前
zmnzmnzmn应助芒果你真甜采纳,获得10
35秒前
36秒前
端庄的钢铁侠完成签到,获得积分20
37秒前
文迪发布了新的文献求助10
37秒前
爆米花应助小杨采纳,获得10
38秒前
冷先森EPC完成签到,获得积分10
39秒前
马华化完成签到,获得积分0
40秒前
wzs222关注了科研通微信公众号
40秒前
kai9712发布了新的文献求助10
41秒前
无花果应助务实道罡采纳,获得10
44秒前
45秒前
PangSir完成签到,获得积分10
48秒前
文迪完成签到,获得积分10
48秒前
DRAZ发布了新的文献求助10
49秒前
妮妮发布了新的文献求助10
51秒前
53秒前
冰棒比冰冰完成签到 ,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777501
求助须知:如何正确求助?哪些是违规求助? 3322845
关于积分的说明 10212016
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798030
科研通“疑难数据库(出版商)”最低求助积分说明 758193