材料科学
电子背散射衍射
微观结构
流动应力
冶金
变形(气象学)
合金
降水
活化能
位错
纹理(宇宙学)
钛合金
应变率
透射电子显微镜
复合材料
人工智能
气象学
纳米技术
有机化学
化学
物理
图像(数学)
计算机科学
作者
Zhiyang Zhang,Meng Zhou,Yi Zhang,Shunlong Tang,Deye Xu,Baohong Tian,Xu Li,Yanlin Jia,Yong Liu,Alex A. Volinsky
标识
DOI:10.1002/adem.202201913
摘要
Cu–Ti–Ni–Mg and Cu–Ti–Ni–Mg–Ce alloys are prepared by vacuum induction melting. The hot deformation tests of the two alloys are carried out on the Gleeble‐1500 simulator under the deformation temperatures of 550–950 °C and strain rates of 0.001–10 s −1 . The true stress–strain curves of the two alloys are obtained and the constitutive equations are established. The activation energy of the Cu–Ti–Ni–Mg alloy is 344.02 kJ mol −1 , and the activation energy of the Cu–Ti–Ni–Mg–Ce alloy is 389.87 kJ mol −1 . Based on the processing maps, the optimal processing parameters of the two alloys are obtained. The microstructure of the two alloys is analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The addition of Ce reduces the dislocation density and texture strength. The CuNi 2 Ti precipitates are found in both alloys, and there are more precipitates in the Cu–Ti–Ni–Mg–Ce alloys. The addition of Ce increases the flow stress and activation energy, promotes precipitation, and improves the deformation resistance of the alloys.
科研通智能强力驱动
Strongly Powered by AbleSci AI