亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Battery impedance spectrum prediction from partial charging voltage curve by machine learning

电阻抗 可解释性 电压 电池(电) 荷电状态 计算机科学 介电谱 航程(航空) 稳健性(进化) 材料科学 电子工程 电气工程 机器学习 工程类 化学 电化学 电极 物理 热力学 功率(物理) 复合材料 物理化学 基因 生物化学
作者
Jia Guo,Yunhong Che,Kjeld Pedersen,Daniel‐Ioan Stroe
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:79: 211-221 被引量:44
标识
DOI:10.1016/j.jechem.2023.01.004
摘要

Electrochemical impedance spectroscopy (EIS) is an effective technique for Lithium-ion battery state of health diagnosis, and the impedance spectrum prediction by battery charging curve is expected to enable battery impedance testing during vehicle operation. However, the mechanistic relationship between charging curves and impedance spectrum remains unclear, which hinders the development as well as optimization of EIS-based prediction techniques. In this paper, we predicted the impedance spectrum by the battery charging voltage curve and optimized the input based on electrochemical mechanistic analysis and machine learning. The internal electrochemical relationships between the charging curve, incremental capacity curve, and the impedance spectrum are explored, which improves the physical interpretability for this prediction and helps define the proper partial voltage range for the input for machine learning models. Different machine learning algorithms have been adopted for the verification of the proposed framework based on the sequence-to-sequence predictions. In addition, the predictions with different partial voltage ranges, at different state of charge, and with different training data ratio are evaluated to prove the proposed method have high generalization and robustness. The experimental results show that the proper partial voltage range has high accuracy and converges to the findings of the electrochemical analysis. The predicted errors for impedance spectrum are less than 1.9 mΩ with the proper partial voltage range selected by the corelative analysis of the electrochemical reactions inside the batteries. Even with the voltage range reduced to 3.65–3.75 V, the predictions are still reliable with most RMSEs less than 4 mΩ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Heaven采纳,获得10
刚刚
10秒前
承序完成签到,获得积分10
14秒前
承序发布了新的文献求助10
18秒前
30秒前
啊哦额发布了新的文献求助10
35秒前
41秒前
44秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
1分钟前
1分钟前
加菲丰丰完成签到,获得积分0
1分钟前
1分钟前
fransiccarey完成签到,获得积分10
1分钟前
顾矜应助胖哥采纳,获得10
1分钟前
兜里没糖了完成签到 ,获得积分10
1分钟前
Yi完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
胖哥发布了新的文献求助10
2分钟前
2分钟前
肖恩发布了新的文献求助10
2分钟前
肖恩完成签到,获得积分10
2分钟前
Heaven完成签到,获得积分20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
3分钟前
胖哥发布了新的文献求助10
3分钟前
3分钟前
Jasper应助Eugene采纳,获得10
3分钟前
Logan完成签到,获得积分10
3分钟前
4分钟前
Heaven发布了新的文献求助10
4分钟前
monair完成签到 ,获得积分10
4分钟前
4分钟前
Willy完成签到,获得积分10
4分钟前
上官若男应助Cheung2121采纳,获得10
4分钟前
4分钟前
123发布了新的文献求助10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060917
求助须知:如何正确求助?哪些是违规求助? 3599429
关于积分的说明 11432156
捐赠科研通 3323465
什么是DOI,文献DOI怎么找? 1827290
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818699