DeepFake detection based on high-frequency enhancement network for highly compressed content

计算机科学 压缩传感 内容(测量理论) 模式识别(心理学) 人工智能 数据挖掘 数学 数学分析
作者
Jie Gao,Zhaoqiang Xia,Gian Luca Marcialis,Chen Dang,Jing Dai,Xiaoyi Feng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123732-123732 被引量:11
标识
DOI:10.1016/j.eswa.2024.123732
摘要

The DeepFake, which generates synthetic content, has sparked a revolution in the fight against deception and forgery. However, most existing DeepFake detection methods mainly focus on improving detection performance with high-quality data while ignoring low-quality synthetic content that suffers from high compression. To address this issue, we propose a novel High-Frequency Enhancement framework, which leverages a learnable adaptive high-frequency enhancement network to enrich weak high-frequency information in compressed content without uncompressed data supervision. The framework consists of three branches, i.e., the Basic branch with RGB domain, the Local High-Frequency Enhancement branch with Block-wise Discrete Cosine Transform, and the Global High-Frequency Enhancement branch with Multi-level Discrete Wavelet Transform. Among them, the local branch utilizes the Discrete Cosine Transform coefficient and channel attention mechanism to indirectly achieve adaptive frequency-aware multi-spatial attention, while the global branch supplements the high-frequency information by extracting coarse-to-fine multi-scale high-frequency cues and cascade-residual-based multi-level fusion by Discrete Wavelet Transform coefficients. In addition, we design a Two-Stage Cross-Fusion module to effectively integrate all information, thereby greatly enhancing weak high-frequency information in low-quality data. Experimental results on FaceForensics++, Celeb-DF, and OpenForensics datasets show that the proposed method outperforms the existing state-of-the-art methods and can effectively improve the detection performance of DeepFakes, especially on low-quality data. The code is available here.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高挑的小蕊完成签到,获得积分10
刚刚
星辰大海应助hsp采纳,获得10
1秒前
香蕉觅云应助三岁采纳,获得10
1秒前
2秒前
han完成签到,获得积分10
2秒前
coconut发布了新的文献求助10
2秒前
枫老板发布了新的文献求助10
2秒前
AX发布了新的文献求助30
2秒前
深情安青应助hutian采纳,获得10
3秒前
星辰大海应助瘦瘦的饼干采纳,获得10
3秒前
WWW完成签到 ,获得积分10
3秒前
柏林寒冬应助顾让采纳,获得10
3秒前
丘比特应助洺全采纳,获得10
3秒前
4秒前
顾矜应助爱笑芝采纳,获得10
4秒前
feike完成签到,获得积分10
4秒前
4秒前
洁净的尔容应助xi采纳,获得10
4秒前
不一样的烟火完成签到,获得积分10
5秒前
6秒前
草莓大恐龙完成签到,获得积分10
6秒前
Zx发布了新的文献求助10
6秒前
6秒前
6秒前
隐形曼青应助蓝莓采纳,获得10
6秒前
6秒前
7秒前
sad发布了新的文献求助10
8秒前
Seciy完成签到 ,获得积分10
8秒前
清秀颜演发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
勤劳的水之完成签到,获得积分10
10秒前
枫老板完成签到,获得积分10
11秒前
茶柠发布了新的文献求助10
11秒前
仁爱傲丝完成签到,获得积分20
11秒前
shuang发布了新的文献求助10
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4237610
求助须知:如何正确求助?哪些是违规求助? 3771626
关于积分的说明 11845236
捐赠科研通 3427722
什么是DOI,文献DOI怎么找? 1881192
邀请新用户注册赠送积分活动 933554
科研通“疑难数据库(出版商)”最低求助积分说明 840491