Deep learning-based compressed SENSE improved diffusion-weighted image quality and liver cancer detection: A prospective study

麦克内马尔试验 肝细胞癌 人工智能 威尔科克森符号秩检验 肝癌 前瞻性队列研究 磁共振弥散成像 图像质量 核医学 计算机科学 放射科 磁共振成像 图像(数学) 医学 曼惠特尼U检验 内科学 统计 数学
作者
Ting Duan,Zhen Zhang,Yidi Chen,Mustafa R. Bashir,Emily Lerner,YaLi Qu,Jie Chen,Xiao‐Yong Zhang,Bin Song,Hanyu Jiang
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:111: 74-83 被引量:1
标识
DOI:10.1016/j.mri.2024.04.010
摘要

To assess whether diffusion-weighted imaging (DWI) with Compressed SENSE (CS) and deep learning (DL-CS-DWI) can improve image quality and lesion detection in patients at risk for hepatocellular carcinoma (HCC). This single-center prospective study enrolled consecutive at-risk participants who underwent 3.0 T gadoxetate disodium-enhanced MRI. Conventional DWI was acquired using parallel imaging (PI) with SENSE (PI-DWI). In CS-DWI and DL-CS-DWI, CS but not PI with SENSE was used to accelerate the scan with 2.5 as the acceleration factor. Qualitative and quantitative image quality were independently assessed by two masked reviewers, and were compared using the Wilcoxon signed-rank test. The detection rates of clinically-relevant (LR-4/5/M based on the Liver Imaging Reporting and Data System v2018) liver lesions for each DWI sequence were independently evaluated by another two masked reviewers against their consensus assessments based on all available non-DWI sequences, and were compared by the McNemar test. 67 participants (median age, 58.0 years; 56 males) with 197 clinically-relevant liver lesions were enrolled. Among the three DWI sequences, DL-CS-DWI showed the best qualitative and quantitative image qualities (p range, <0.001–0.039). For clinically-relevant liver lesions, the detection rates (91.4%–93.4%) of DL-CS-DWI showed no difference with CS-DWI (87.3%–89.8%, p = 0.230–0.231) but were superior to PI-DWI (82.7%–85.8%, p = 0.015–0.025). For lesions located in the hepatic dome, DL-CS-DWI demonstrated the highest detection rates (94.8%–97.4% vs 76.9%–79.5% vs 64.1%–69.2%, p = 0.002–0.045) among the three DWI sequences. In patients at high-risk for HCC, DL-CS-DWI improved image quality and detection for clinically-relevant liver lesions, especially for the hepatic dome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过的丹烟完成签到,获得积分10
2秒前
4秒前
十三完成签到 ,获得积分10
4秒前
5秒前
L.C.发布了新的文献求助10
8秒前
8秒前
水手_发布了新的文献求助10
9秒前
10秒前
顾矜应助L.C.采纳,获得10
11秒前
librahapper发布了新的文献求助10
13秒前
13秒前
归尘应助April采纳,获得10
14秒前
我要读博完成签到,获得积分10
14秒前
水手_完成签到,获得积分10
14秒前
霍师傅发布了新的文献求助10
15秒前
L.C.完成签到,获得积分10
17秒前
19秒前
Annie完成签到,获得积分10
19秒前
桐桐应助乐观的花生采纳,获得10
21秒前
FashionBoy应助霍师傅采纳,获得10
23秒前
liangxt发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
xiaopan9083发布了新的文献求助10
29秒前
四夕完成签到 ,获得积分10
31秒前
sparkle发布了新的文献求助10
31秒前
32秒前
Leeu完成签到,获得积分10
32秒前
科研通AI5应助xiaopan9083采纳,获得10
35秒前
1LDan完成签到,获得积分20
36秒前
39秒前
rrrrroxie应助wendinfgmei采纳,获得30
40秒前
归尘应助April采纳,获得10
41秒前
顺心牛排发布了新的文献求助10
44秒前
45秒前
47秒前
大萝贝完成签到,获得积分10
47秒前
FashionBoy应助顺心牛排采纳,获得10
49秒前
liangxt完成签到,获得积分20
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385