Random load identification of cylindrical shell structure based on multi-layer neural network and support vector regression

壳体(结构) 鉴定(生物学) 人工神经网络 图层(电子) 回归 计算机科学 支持向量机 模式识别(心理学) 人工智能 材料科学 数学 统计 复合材料 生物 植物
作者
Xinliang Yang,Yanfeng Guo,Yawen Chen,Jinwei Zhao,Longlei Dong,Yanjun Lü
出处
期刊:Journal of Strain Analysis for Engineering Design [SAGE Publishing]
标识
DOI:10.1177/03093247241245185
摘要

A new-type identification method in the frequency domain by combining a multi-layer neural network and support vector regression is proposed to identify random load of a complex cylindrical shell structure. The kernel function of support vector regression has a great influence on the prediction accuracy of machine learning model, and it is effective to employ the linear function. As the penalty factor is large, the identification accuracy of the Gaussian kernel function is close to the linear kernel function. In the process of random load identification, the prediction accuracy of the neural network using the L-BFGS method is higher than the traditional Adam method. The number of hidden layers of the neural network has little effect on the L-BFGS algorithm, but a great effect on the Adam method. Different levels of noise are introduced to verify the robustness of the machine learning model. Both the support vector regression with linear kernel function and neural network model based on the L-BFGS method have strong robustness. For the noise percentage of 1%, the support vector regression has better prediction accuracy than the neural network, yet the case is contrary for the noise percentage greater than 5%. The verification shows that the neural network model trained by simulation data has better identification accuracy for real load at some frequencies. The load identification method is proposed based on the frequency points which may establish the machine learning model. The mean absolute percentage error shows that the method based on a multi-layer neural network and support vector regression has high identification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勾勾1991完成签到,获得积分10
刚刚
肉胖胖肉完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
4秒前
Stay发布了新的文献求助10
5秒前
yu发布了新的文献求助10
6秒前
6秒前
波博士发布了新的文献求助15
7秒前
老温完成签到,获得积分10
7秒前
Hany发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
美好黑猫发布了新的文献求助10
11秒前
11秒前
11秒前
Milou发布了新的文献求助10
13秒前
14秒前
段ddd发布了新的文献求助10
14秒前
xx发布了新的文献求助10
14秒前
ding应助秦鸿儒采纳,获得10
15秒前
Cc8完成签到,获得积分10
16秒前
ym发布了新的文献求助10
17秒前
18秒前
美好黑猫完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
HC完成签到,获得积分10
20秒前
Milou完成签到,获得积分10
20秒前
20秒前
田様应助mft1989mft采纳,获得10
21秒前
23秒前
23秒前
木木关注了科研通微信公众号
23秒前
Lucas应助天涯飞虎采纳,获得10
24秒前
HC发布了新的文献求助10
24秒前
桐桐应助大兵采纳,获得30
24秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864745
求助须知:如何正确求助?哪些是违规求助? 3407218
关于积分的说明 10653029
捐赠科研通 3131203
什么是DOI,文献DOI怎么找? 1726890
邀请新用户注册赠送积分活动 832079
科研通“疑难数据库(出版商)”最低求助积分说明 780124