Introduction to MXenes a Next‐generation 2D Material

MXenes公司 计算机科学 化学 有机化学
作者
Kshitij RB Singh,Sushma Thapa,Jay Singh,Shashi Pandey-Rai,Ravindra Pratap Singh
标识
DOI:10.1002/9781119874027.ch1
摘要

Chapter 1 Introduction to MXenes a Next-generation 2D Material Kshitij RB Singh, Kshitij RB Singh Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu, Japan Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, IndiaSearch for more papers by this authorSushma Thapa, Sushma Thapa Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu, Japan Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, IndiaSearch for more papers by this authorJay Singh, Jay Singh Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, IndiaSearch for more papers by this authorShyam S. Pandey, Shyam S. Pandey Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu, JapanSearch for more papers by this authorRavindra Pratap Singh, Ravindra Pratap Singh Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, IndiaSearch for more papers by this author Kshitij RB Singh, Kshitij RB Singh Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu, Japan Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, IndiaSearch for more papers by this authorSushma Thapa, Sushma Thapa Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu, Japan Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, IndiaSearch for more papers by this authorJay Singh, Jay Singh Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, IndiaSearch for more papers by this authorShyam S. Pandey, Shyam S. Pandey Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu, Kitakyushu, JapanSearch for more papers by this authorRavindra Pratap Singh, Ravindra Pratap Singh Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, IndiaSearch for more papers by this author Book Editor(s):Professor Charles Oluwaseun Adetunji, Professor Charles Oluwaseun Adetunji Edo University, Iyamho, NigeriaSearch for more papers by this authorDr Jay Singh, Dr Jay Singh Banaras Hindu University, Varanasi, Uttar Pradesh, IndiaSearch for more papers by this authorDr Kshitij Singh, Dr Kshitij Singh Govt. V. Y. T. PG. Autonomous College, Durg, Chattisgarh, IndiaSearch for more papers by this authorDr Ravindra Pratap Singh, Dr Ravindra Pratap Singh Govt. of India New Delhi, New Delhi, IndiaSearch for more papers by this author First published: 29 March 2024 https://doi.org/10.1002/9781119874027.ch1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Currently, 2D MXenes are recognized as potential materials because of their miscellaneous chemical composition with excellent physical, electronic, mechanical, magnetic, and thermal properties. The MXenes family has attracted significant research interest in various application fields, for instance, agriculture, environmental remediation, energy storage, and biomedical, due to their excellent features, such as hydrophilicity, activated metallic hydroxide sites, high surface area, biocompatibility, and ease of functionalization. The investigation of biomedical applications is comparatively more escalating than in other fields. Hence, in this book chapter, the synthesis methods, application, characterization techniques, and properties of 2D MXenes are presented, along with the challenges and future opportunities of MXenes. References Naguib , M. , Kurtoglu , M. , Presser , V. et al. ( 2011 ). Two-dimensional nanocrystals produced by exfoliation of Ti 3 AlC 2 . Adv. Mater. 23 ( 37 ): 4248 – 4253 . 10.1002/adma.201102306 CASPubMedWeb of Science®Google Scholar Novoselov , K.S. , Mishchenko , A. , Carvalho , A. , and Castro Neto , A.H. ( 2016 ). 2D materials and van der Waals heterostructures . Science (1979) 353 ( 6298 ). Google Scholar Nicolosi , V. , Chhowalla , M. , Kanatzidis , M.G. et al. ( 2013 ). Liquid exfoliation of layered materials . Science (1979) 340 ( 6139 ). Google Scholar Zhu , Y. , Murali , S. , Cai , W. et al. ( 2010 ). Graphene and graphene oxide: synthesis, properties, and applications . Adv. Mater. 22 ( 35 ): 3906 – 3924 . 10.1002/adma.201001068 CASPubMedWeb of Science®Google Scholar Castro Neto , A.H. , Guinea , F. , Peres , N.M.R. et al. ( 2009 ). The electronic properties of graphene . Rev. Mod. Phys. 81 ( 1 ): 109 – 162 . 10.1103/RevModPhys.81.109 CASWeb of Science®Google Scholar Novoselov , K.S. , Jiang , D. , Schedin , F. et al. ( 2005 ). Two-dimensional atomic crystals . Proc. Nat. Acad. Sci. 102 ( 30 ): 10451 – 10453 . 10.1073/pnas.0502848102 CASPubMedWeb of Science®Google Scholar Naguib , M. , Mochalin , V.N. , Barsoum , M.W. , and Gogotsi , Y. ( 2014 ). 25th Anniversary article: MXenes: a new family of two-dimensional materials . Adv. Mater. 26 ( 7 ): 992 – 1005 . 10.1002/adma.201304138 CASPubMedWeb of Science®Google Scholar Alhabeb , M. , Maleski , K. , Anasori , B. et al. ( 2017 ). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti 3 C 2 T x MXene) . Chem. Mater. 29 ( 18 ): 7633 – 7644 . 10.1021/acs.chemmater.7b02847 CASWeb of Science®Google Scholar Barsoum , M.W. ( 2000 ). The M N+1 AX N phases: a new class of solids . Prog. Solid State Chem. 28 ( 1–4 ): 201 – 281 . 10.1016/S0079-6786(00)00006-6 CASWeb of Science®Google Scholar Eklund , P. , Beckers , M. , Jansson , U. et al. ( 2010 ). The M n +1 AX n phases: materials science and thin-film processing . Thin Solid Films 518 ( 8 ): 1851 – 1878 . 10.1016/j.tsf.2009.07.184 CASWeb of Science®Google Scholar Hantanasirisakul , K. and Gogotsi , Y. ( 2018 ). Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) . Adv. Mater. 30 ( 52 ): 1804779 . 10.1002/adma.201804779 Web of Science®Google Scholar Sang , X. , Xie , Y. , Lin , M.-W. et al. ( 2016 ). Atomic defects in monolayer titanium carbide (Ti 3 C 2 T x ) MXene . ACS Nano 10 ( 10 ): 9193 – 9200 . 10.1021/acsnano.6b05240 CASPubMedWeb of Science®Google Scholar Ghidiu , M. , Naguib , M. , Shi , C. et al. ( 2014 ). Synthesis and characterization of two-dimensional Nb 4 C 3 (MXene) . Chem. Commun. 50 ( 67 ): 9517 – 9520 . 10.1039/C4CC03366C CASPubMedWeb of Science®Google Scholar Anasori , B. , Lukatskaya , M.R. , and Gogotsi , Y. ( 2017 ). 2D metal carbides and nitrides (MXenes) for energy storage . Nat. Rev. Mater. 2 ( 2 ): 16098 . 10.1038/natrevmats.2016.98 CASWeb of Science®Google Scholar Urbankowski , P. , Anasori , B. , Makaryan , T. et al. ( 2016 ). Synthesis of two-dimensional titanium nitride Ti 4 N 3 (MXene) . Nanoscale 8 ( 22 ): 11385 – 11391 . 10.1039/C6NR02253G CASPubMedWeb of Science®Google Scholar Paul , J.T. , Singh , A.K. , Dong , Z. et al. ( 2017 ). Computational methods for 2D materials: discovery, property characterization, and application design . J. Phys.: Condens. Matter 29 ( 47 ): 473001 . 10.1088/1361-648X/aa9305 CASPubMedWeb of Science®Google Scholar Shein , I.R. and Ivanovskii , A.L. ( 2012 ). Planar nano-block structures Ti n +1 Al 0.5 C n and Ti n +1 C n ( n =1, and 2) from MAX phases: structural, electronic properties and relative stability from first principles calculations . Superlattices Microstruct. 52 ( 2 ): 147 – 157 . 10.1016/j.spmi.2012.04.014 CASWeb of Science®Google Scholar Choi , G. , Shahzad , F. , Bahk , Y.-M. et al. ( 2018 ). Enhanced terahertz shielding of MXenes with Nano-metamaterials . Adv. Opt. Mater. 6 ( 5 ): 1701076 . 10.1002/adom.201701076 Google Scholar Khazaei , M. , Arai , M. , Sasaki , T. et al. ( 2014 ). Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family . Phys. Chem. Chem. Phys. 16 ( 17 ): 7841 – 7849 . 10.1039/C4CP00467A CASPubMedWeb of Science®Google Scholar Khazaei , M. , Arai , M. , Sasaki , T. et al. ( 2013 ). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides . Adv. Funct. Mater. 23 ( 17 ): 2185 – 2192 . 10.1002/adfm.201202502 CASWeb of Science®Google Scholar Anasori , B. , Xie , Y. , Beidaghi , M. et al. ( 2015 ). Two-dimensional, ordered, double transition metals carbides (MXenes) . ACS Nano 9 ( 10 ): 9507 – 9516 . 10.1021/acsnano.5b03591 CASPubMedWeb of Science®Google Scholar Gao , G. , Ding , G. , Li , J. et al. ( 2016 ). Monolayer MXenes: promising half-metals and spin gapless semiconductors . Nanoscale 8 ( 16 ): 8986 – 8994 . 10.1039/C6NR01333C CASPubMedWeb of Science®Google Scholar Si , C. , Zhou , J. , and Sun , Z. ( 2015 ). Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr 2 C crystals . ACS Appl. Mater. Interfaces 7 ( 31 ): 17510 – 17515 . 10.1021/acsami.5b05401 CASPubMedWeb of Science®Google Scholar Rasool , K. , Helal , M. , Ali , A. et al. ( 2016 ). Antibacterial activity of Ti 3 C 2 T x MXene . ACS Nano 10 ( 3 ): 3674 – 3684 . 10.1021/acsnano.6b00181 CASPubMedWeb of Science®Google Scholar Xu , J. , Shim , J. , Park , J.-H. , and Lee , S. ( 2016 ). MXene electrode for the integration of WSe 2 and MoS 2 field effect transistors . Adv. Funct. Mater. 26 ( 29 ): 5328 – 5334 . 10.1002/adfm.201600771 CASWeb of Science®Google Scholar Anasori , B. , Shi , C. , Moon , E.J. et al. ( 2016 ). Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers . Nanoscale Horiz. 1 ( 3 ): 227 – 234 . 10.1039/C5NH00125K CASPubMedWeb of Science®Google Scholar Satheeshkumar , E. , Makaryan , T. , Melikyan , A. et al. ( 2016 ). One-step solution processing of ag, au and Pd@MXene hybrids for SERS . Sci. Rep. 6 ( 1 ): 32049 . 10.1038/srep32049 CASPubMedGoogle Scholar Chaudhuri , K. , Alhabeb , M. , Wang , Z. et al. ( 2018 ). Highly broadband absorber using plasmonic titanium carbide (MXene) . ACS Photonics 5 ( 3 ): 1115 – 1122 . 10.1021/acsphotonics.7b01439 CASWeb of Science®Google Scholar Lashgari , H. , Abolhassani , M.R. , Boochani , A. et al. ( 2014 ). Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations . Solid State Commun. 195 : 61 – 69 . 10.1016/j.ssc.2014.06.008 CASWeb of Science®Google Scholar Zhang , X. , Ma , Z. , Zhao , X. et al. ( 2015 ). Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes . J. Mater. Chem., A Mater. 3 ( 9 ): 4960 – 4966 . 10.1039/C4TA06557C CASGoogle Scholar Berdiyorov , G.R. ( 2016 ). Optical properties of functionalized Ti 3 C 2 T 2 (T = F, O, OH) MXene: first-principles calculations . AIP Adv. 6 ( 5 ): 055105 . 10.1063/1.4948799 Google Scholar Hantanasirisakul , K. , Zhao , M. , Urbankowski , P. et al. ( 2016 ). Fabrication of Ti 3 C 2 T x MXene transparent thin films with tunable optoelectronic properties . Adv. Electron. Mater. 2 ( 6 ): 1600050 . 10.1002/aelm.201600050 CASWeb of Science®Google Scholar Chandrasekaran , A. , Mishra , A. , and Singh , A.K. ( 2017 ). Ferroelectricity, antiferroelectricity, and ultrathin 2D Electron/hole gas in multifunctional monolayer MXene . Nano Lett. 17 ( 5 ): 3290 – 3296 . 10.1021/acs.nanolett.7b01035 CASPubMedWeb of Science®Google Scholar Ingason , A.S. , Mockute , A. , Dahlqvist , M. et al. ( 2013 ). Magnetic self-organized atomic laminate from first principles and thin film synthesis . Phys. Rev. Lett. 110 ( 19 ): 195502 . 10.1103/PhysRevLett.110.195502 CASPubMedGoogle Scholar Sun , Z. , Ahuja , R. , Li , S. , and Schneider , J.M. ( 2003 ). Structure and bulk modulus of M 2 AlC (M=Ti, V, and Cr) . Appl. Phys. Lett. 83 ( 5 ): 899 – 901 . 10.1063/1.1599038 CASWeb of Science®Google Scholar Liu , Z. , Wu , E. , Wang , J. et al. ( 2014 ). Crystal structure and formation mechanism of (Cr 2/3 Ti 1/3 ) 3 AlC 2 MAX phase . Acta Mater. 73 : 186 – 193 . 10.1016/j.actamat.2014.04.006 CASWeb of Science®Google Scholar Zhao , S. , Kang , W. , and Xue , J. ( 2014 ). Manipulation of electronic and magnetic properties of M 2 C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains . Appl. Phys. Lett. 104 ( 13 ): 133106 . 10.1063/1.4870515 Web of Science®Google Scholar Hwang , S.K. , Kang , S.-M. , Rethinasabapathy , M. et al. ( 2020 ). MXene: An emerging two-dimensional layered material for removal of radioactive pollutants . Chem. Eng. J. 397 : 125428 . 10.1016/j.cej.2020.125428 CASWeb of Science®Google Scholar Dillon , A.D. , Ghidiu , M.J. , Krick , A.L. et al. ( 2016 ). Highly conductive optical quality solution-processed films of 2D titanium carbide . Adv. Funct. Mater. 26 ( 23 ): 4162 – 4168 . 10.1002/adfm.201600357 CASWeb of Science®Google Scholar Hu , L. , Wu , X. , and Yang , J. ( 2016 ). Mn 2 C monolayer: a 2D antiferromagnetic metal with high Néel temperature and large spin–orbit coupling . Nanoscale 8 ( 26 ): 12939 – 12945 . 10.1039/C6NR02417C CASPubMedWeb of Science®Google Scholar Huang , K. , Li , Z. , Lin , J. et al. ( 2018 ). Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications . Chem. Soc. Rev. 47 ( 14 ): 5109 – 5124 . 10.1039/C7CS00838D CASPubMedWeb of Science®Google Scholar Fu , B. , Sun , J. , Wang , C. et al. ( 2021 ). MXenes: synthesis, optical properties, and applications in ultrafast photonics . Small 17 ( 11 ): 2006054 . 10.1002/smll.202006054 CASPubMedWeb of Science®Google Scholar Naguib , M. , Mashtalir , O. , Carle , J. et al. ( 2012 ). Two-dimensional transition metal carbides . ACS Nano 6 ( 2 ): 1322 – 1331 . 10.1021/nn204153h CASPubMedWeb of Science®Google Scholar Huang , J. , Li , Z. , Mao , Y. , and Li , Z. ( 2021 ). Progress and biomedical applications of MXenes . Nano Select 2 ( 8 ): 1480 – 1508 . 10.1002/nano.202000309 CASGoogle Scholar Seredych , M. , Shuck , C.E. , Pinto , D. et al. ( 2019 ). High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis . Chem. Mater. 31 ( 9 ): 3324 – 3332 . 10.1021/acs.chemmater.9b00397 CASWeb of Science®Google Scholar Naguib , M. and Gogotsi , Y. ( 2015 ). Synthesis of two-dimensional materials by selective extraction . Acc. Chem. Res. 48 ( 1 ): 128 – 135 . 10.1021/ar500346b CASPubMedWeb of Science®Google Scholar Mashtalir , O. , Naguib , M. , Mochalin , V.N. et al. ( 2013 ). Intercalation and delamination of layered carbides and carbonitrides . Nat. Commun. 4 ( 1 ): 1716 . 10.1038/ncomms2664 PubMedWeb of Science®Google Scholar Halim , J. , Lukatskaya , M.R. , Cook , K.M. et al. ( 2014 ). Transparent conductive two-dimensional titanium carbide epitaxial thin films . Chem. Mater. 26 ( 7 ): 2374 – 2381 . 10.1021/cm500641a CASPubMedWeb of Science®Google Scholar Lin , H. , Chen , Y. , and Shi , J. ( 2018 ). Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead . Adv. Sci. 5 ( 10 ): 1800518 . 10.1002/advs.201800518 Google Scholar Wei , Y. , Zhang , P. , Soomro , R.A. et al. ( 2021 ). Advances in the synthesis of 2D MXenes . Adv. Mater. 33 ( 39 ): 2103148 . 10.1002/adma.202103148 CASWeb of Science®Google Scholar Soleymaniha , M. , Shahbazi , M.-A. , Rafieerad , A.R. et al. ( 2019 ). Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations . Adv. Healthcare Mater. 8 ( 1 ): 1801137 . 10.1002/adhm.201801137 PubMedWeb of Science®Google Scholar Zamhuri , A. , Lim , G.P. , Ma , N.L. et al. ( 2021 ). MXene in the lens of biomedical engineering: synthesis, applications and future outlook . Biomed. Eng. Online 20 ( 1 ): 33 . 10.1186/s12938-021-00873-9 PubMedWeb of Science®Google Scholar Huang , K. , Li , Z. , Lin , J. et al. ( 2018 ). Correction: two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications . Chem. Soc. Rev. 47 ( 17 ): 6889 – 6889 . 10.1039/C8CS90090F CASPubMedWeb of Science®Google Scholar Xu , C. , Wang , L. , Liu , Z. et al. ( 2015 ). Large-area high-quality 2D ultrathin Mo 2 C superconducting crystals . Nat. Mater. 14 ( 11 ): 1135 – 1141 . 10.1038/nmat4374 CASPubMedWeb of Science®Google Scholar Backes , C. , Higgins , T.M. , Kelly , A. et al. ( 2017 ). Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation . Chem. Mater. 29 ( 1 ): 243 – 255 . 10.1021/acs.chemmater.6b03335 CASGoogle Scholar Karlsson , L.H. , Birch , J. , Halim , J. et al. ( 2015 ). Atomically resolved structural and chemical investigation of single MXene sheets . Nano Lett. 15 ( 8 ): 4955 – 4960 . 10.1021/acs.nanolett.5b00737 CASPubMedWeb of Science®Google Scholar Pinto , D. , Anasori , B. , Avireddy , H. et al. ( 2020 ). Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes . J. Mater. Chem., A Mater. 8 ( 18 ): 8957 – 8968 . 10.1039/D0TA01798A CASWeb of Science®Google Scholar Shekhirev , M. , Shuck , C.E. , Sarycheva , A. , and Gogotsi , Y. ( 2021 ). Characterization of MXenes at every step, from their precursors to single flakes and assembled films . Prog. Mater Sci. 120 : 100757 . 10.1016/j.pmatsci.2020.100757 CASWeb of Science®Google Scholar Scheibe , B. , Tadyszak , K. , Jarek , M. et al. ( 2019 ). Study on the magnetic properties of differently functionalized multilayered Ti 3 C 2 T x MXenes and Ti-Al-C carbides . Appl. Surf. Sci. 479 : 216 – 224 . 10.1016/j.apsusc.2019.02.055 CASWeb of Science®Google Scholar Halim , J. , Cook , K.M. , Naguib , M. et al. ( 2016 ). X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) . Appl. Surf. Sci. 362 : 406 – 417 . 10.1016/j.apsusc.2015.11.089 CASWeb of Science®Google Scholar Myhra , S. , Crossley , J.A.A. , and Barsoum , M.W. ( 2001 ). Crystal-chemistry of the Ti 3 AlC 2 and Ti 4 AlN 3 layered carbide/nitride phases—characterization by XPS . J. Phys. Chem. Solids 62 ( 4 ): 811 – 817 . 10.1016/S0022-3697(00)00268-7 CASGoogle Scholar Gouadec , G. and Colomban , P. ( 2007 ). Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties . Prog. Cryst. Growth Charact. Mater. 53 ( 1 ): 1 – 56 . 10.1016/j.pcrysgrow.2007.01.001 CASWeb of Science®Google Scholar Pang , J. , Mendes , R.G. , Bachmatiuk , A. et al. ( 2019 ). Applications of 2D MXenes in energy conversion and storage systems . Chem. Soc. Rev. 48 ( 1 ): 72 – 133 . 10.1039/C8CS00324F CASPubMedWeb of Science®Google Scholar Chen , C. , Boota , M. , Xie , X. et al. ( 2017 ). Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers . J. Mater. Chem., A Mater. 5 ( 11 ): 5260 – 5265 . 10.1039/C7TA00149E CASWeb of Science®Google Scholar Rasool , K. , Mahmoud , K.A. , Johnson , D.J. et al. ( 2017 ). Efficient antibacterial membrane based on two-dimensional Ti 3 C 2 T x (MXene) nanosheets . Sci. Rep. 7 ( 1 ): 1598 . 10.1038/s41598-017-01714-3 PubMedGoogle Scholar Jastrzębska , A.M. , Karwowska , E. , Wojciechowski , T. et al. ( 2019 ). The atomic structure of Ti 2 C and Ti 3 C 2 MXenes is responsible for their antibacterial activity toward E. coli bacteria . J. Mater. Eng. Perform. 28 ( 3 ): 1272 – 1277 . 10.1007/s11665-018-3223-z CASWeb of Science®Google Scholar Arabi Shamsabadi , A. , Sharifian Gh , M. , Anasori , B. , and Soroush , M. ( 2018 ). Antimicrobial mode-of-action of colloidal Ti 3 C 2 T x MXene nanosheets . ACS Sustainable Chem. Eng. 6 ( 12 ): 16586 – 16596 . 10.1021/acssuschemeng.8b03823 CASWeb of Science®Google Scholar Mei , L. , Zhu , S. , Yin , W. et al. ( 2020 ). Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives . Theranostics 10 ( 2 ): 757 – 781 . 10.7150/thno.39701 CASPubMedWeb of Science®Google Scholar Li , J. , Li , Z. , Liu , X. et al. ( 2021 ). Interfacial engineering of Bi 2 S 3 /Ti 3 C 2 T x MXene based on work function for rapid photo-excited bacteria-killing . Nat. Commun. 12 ( 1 ): 1224 . 10.1038/s41467-021-21435-6 CASPubMedGoogle Scholar An , H. , Mamuti , M. , Wang , X. et al. ( 2021 ). Rationally designed modular drug delivery platform based on intracellular peptide self-assembly . Exploration 1 ( 2 ): 20210153 . 10.1002/EXP.20210153 Google Scholar Han , X. , Huang , J. , Lin , H. et al. ( 2018 ). 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer . Adv. Healthcare Mater. 7 ( 9 ): 1701394 . 10.1002/adhm.201701394 Web of Science®Google Scholar Xing , C. , Chen , S. , Liang , X. et al. ( 2018 ). Two-dimensional MXene (Ti 3 C 2 )-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity . ACS Appl. Mater. Interfaces 10 ( 33 ): 27631 – 27643 . 10.1021/acsami.8b08314 CASPubMedWeb of Science®Google Scholar Deng , X. and Gu , M. ( 2003 ). Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation . Appl. Opt. 42 ( 16 ): 3321 . 10.1364/AO.42.003321 PubMedGoogle Scholar Liu , G. , Zou , J. , Tang , Q. et al. ( 2017 ). Surface modified Ti 3 C 2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy . ACS Appl. Mater. Interfaces 9 ( 46 ): 40077 – 40086 . 10.1021/acsami.7b13421 CASPubMedWeb of Science®Google Scholar Xue , Q. , Zhang , H. , Zhu , M. et al. ( 2017 ). Photoluminescent Ti 3 C 2 MXene quantum dots for multicolor cellular imaging . Adv. Mater. 29 ( 15 ): 1604847 . 10.1002/adma.201604847 CASWeb of Science®Google Scholar Huang , D. , Xie , Y. , Lu , D. et al. ( 2019 ). Demonstration of a white laser with V 2 C MXene-based quantum dots . Adv. Mater. 1901117 . 10.1002/adma.201901117 Google Scholar Yang , G. , Zhao , J. , Yi , S. et al. ( 2020 ). Biodegradable and photostable Nb 2 C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging . Sens. Actuators, B 309 : 127735 . 10.1016/j.snb.2020.127735 CASWeb of Science®Google Scholar Caravan , P. , Ellison , J.J. , McMurry , T.J. , and Lauffer , R.B. ( 1999 ). Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications . Chem. Rev. 99 ( 9 ): 2293 – 2352 . 10.1021/cr980440x CASPubMedWeb of Science®Google Scholar Tian , T. , Qiao , G. , Deng , B. et al. ( 2019 ). The effects of rain shelter coverings on the vegetative growth and fruit characteristics of Chinese cherry (Prunus pseudocerasus Lindl.) . Sci. Hortic. 254 : 228 – 235 . 10.1016/j.scienta.2019.04.030 Google Scholar Dierickx , W. and Van Den Berghe , P. ( 2004 ). Natural weathering of textiles used in agricultural applications . Geotext. Geomembr. 22 ( 4 ): 255 – 272 . 10.1016/j.geotexmem.2004.03.001 Web of Science®Google Scholar Lai , Y.-C. , Hsiao , Y.-C. , Wu , H.-M. , and Wang , Z.L. ( 2019 ). Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors . Adv. Sci. 6 ( 5 ): 1801883 . 10.1002/advs.201801883 Google Scholar Yoo , D. , Park , S.-C. , Lee , S. et al. ( 2019 ). Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies . Nano Energy 57 : 424 – 431 . 10.1016/j.nanoen.2018.12.035 CASWeb of Science®Google Scholar Jiang , C. , Li , X. , Ying , Y. , and Ping , J. ( 2020 ). A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture . Nano Energy 74 : 104863 . 10.1016/j.nanoen.2020.104863 CASWeb of Science®Google Scholar Chaudhary , V. , Gautam , A. , Mishra , Y.K. , and Kaushik , A. ( 2021 ). Emerging MXene–polymer hybrid nanocomposites for high-performance ammonia sensing and monitoring . Nanomaterials 11 ( 10 ): 2496 . 10.3390/nano11102496 CASPubMedWeb of Science®Google Scholar Hao , L. , Gong , L. , Chen , L. et al. ( 2020 ). Composite pesticide nanocarriers involving functionalized boron nitride nanoplatelets for pH-responsive release and enhanced UV stability . Chem. Eng. J. 396 : 125233 . 10.1016/j.cej.2020.125233 CASWeb of Science®Google Scholar Carvalho , F.P. ( 2017 ). Pesticides, environment, and food safety . Food Energy Secur. 6 ( 2 ): 48 – 60 . 10.1002/fes3.108 Web of Science®Google Scholar Zhao , F. , Yao , Y. , Jiang , C. et al. ( 2020 ). Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing . J. Hazard Mater. 384 : 121358 . 10.1016/j.jhazmat.2019.121358 CASPubMedWeb of Science®Google Scholar Song , S. , Jiang , X. , Shen , H. et al. ( 2021 ). MXene (Ti 3 C 2 ) based pesticide delivery system for sustained release and enhanced pest control . ACS Appl. Bio Mater. 4 ( 9 ): 6912 – 6923 . 10.1021/acsabm.1c00607 CASPubMedGoogle Scholar Jasper , J.T. , Yang , Y. , and Hoffmann , M.R. ( 2017 ). Toxic byproduct formation during electrochemical treatment of latrine wastewater . Environ. Sci. Technol. 51 ( 12 ): 7111 – 7119 . 10.1021/acs.est.7b01002 CASPubMedGoogle Scholar Robinson , T. , McMullan , G. , Marchant , R. , and Nigam , P. ( 2001 ). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative . Bioresour. Technol. 77 ( 3 ): 247 – 255 . 10.1016/S0960-8524(00)00080-8 CASPubMedWeb of Science®Google Scholar Burgess , J.E. , Parsons , S.A. , and Stuetz , R.M. ( 2001 ). Developments in odour control and waste gas treatment biotechnology: a review . Biotechnol. Adv. 19 ( 1 ): 35 – 63 . 10.1016/S0734-9750(00)00058-6 CASPubMedWeb of Science®Google Scholar Crini , G. ( 2005 ). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment . Prog. Polym. Sci. 30 ( 1 ): 38 – 70 . 10.1016/j.progpolymsci.2004.11.002 CASWeb of Science®Google Scholar QU , J. ( 2008 ). Research progress of novel adsorption processes in water purification: a review . J. Environ. Sci. 20 ( 1 ): 1 – 13 . 10.1016/S1001-0742(08)60001-7 CASPubMedWeb of Science®Google Scholar Das , R. , Vecitis , C.D. , Schulze , A. et al. ( 2017 ). Recent advances in nanomaterials for water protection and monitoring . Chem. Soc. Rev. 46 ( 22 ): 6946 – 7020 . 10.1039/C6CS00921B CASPubMedWeb of Science®Google Scholar Yu , L. , Ruan , S. , Xu , X. et al. ( 2017 ). One-dimensional nanomaterial-assembled macroscopic membranes for water treatment . Nano Today 17 : 79 – 95 . 10.1016/j.nantod.2017.10.012 CASWeb of Science®Google Scholar Sun , S. , Jiao , T. , Xing , R. et al. ( 2018 ). Preparation of MoS 2 -based polydopamine-modified core–shell nanocomposites with elevated adsorption performances . RSC Adv. 8 ( 38 ): 21644 – 21650 . 10.1039/C8RA02964D CASPubMedGoogle Scholar Wei , Z. , Peigen , Z. , Wubian , T. et al. ( 2018 ). Alkali treated Ti 3 C 2 T x MXenes and their dye adsorption performance . Mater. Chem. Phys. 206 : 270 – 276 . 10.1016/j.matchemphys.2017.12.034 CASWeb of Science®Google Scholar Tunesi , M.M. , Soomro , R.A. , Han , X. et al. ( 2021 ). Application of MXenes in environmental remediation technologies . Nano Convergence 8 ( 1 ): 5 . 10.1186/s40580-021-00255-w CASPubMedGoogle Scholar Mashtalir , O. , Cook , K.M. , Mochalin , V.N. et al. ( 2014 ). Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media . J. Mater. Chem. A 2 ( 35 ): 14334 – 14338 . 10.1039/C4TA02638A CASWeb of Science®Google Scholar Carolin , C.F. , Kumar , P.S. , Saravanan , A. et al. ( 2017 ). Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review . J. Environ. Chem. Eng. 5 ( 3 ): 2782 – 2799 . 10.1016/j.jece.2017.05.029 CASWeb of Science®Google Scholar Peng , Q. , Guo , J. , Zhang , Q. et al. ( 2014 ). Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide . JACS 136 ( 11 ): 4113 – 4116 . 10.1021/ja500506k CASPubMedWeb of Science®Google Scholar Reddy , A.L.M. , Gowda , S.R. , Shaijumon , M.M. , and Ajayan , P.M. ( 2012 ). Hybrid nanostructures for energy storage applications . Adv. Mater. 24 ( 37 ): 5045 – 5064 . 10.1002/adma.201104502 CASPubMedWeb of Science®Google Scholar Chu , S. and Majumdar , A. ( 2012 ). Opportunities and challenges for a sustainable energy future . Nature 488 ( 7411 ): 294 – 303 . 10.1038/nature11475 CASPubMedWeb of Science®Google Scholar Eames , C. and Islam , M.S. ( 2014 ). Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials . J. Am. Chem. Soc. 136 ( 46 ): 16270 – 16276 . 10.1021/ja508154e CASPubMedWeb of Science®Google Scholar Hu , Q. , Sun , D. , Wu , Q. et al. ( 2013 ). MXene: a new family of promising hydrogen storage medium . J. Phys. Chem. A 117 ( 51 ): 14253 – 14260 . 10.1021/jp409585v CASPubMedWeb of Science®Google Scholar Wang , Z. , Tammela , P. , Strømme , M. , and Nyholm , L. ( 2015 ). Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance . Nanoscale 7 ( 8 ): 3418 – 3423 . 10.1039/C4NR07251K CASPubMedWeb of Science®Google Scholar Long , W. , Fang , B. , Ignaszak , A. et al. ( 2017 ). Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries . Chem. Soc. Rev. 46 ( 23 ): 7176 – 7190 . 10.1039/C6CS00639F CASPubMedWeb of Science®Google Scholar Deng , Y. , Fang , C. , and Chen , G. ( 2016 ). The developments of SnO 2 /graphene nanocomposites as anode materials for high performance lithium ion batteries: a review . J. Power Sources 304 : 81 – 101 . 10.1016/j.jpowsour.2015.11.017 CASWeb of Science®Google Scholar Naguib , M. , Come , J. , Dyatkin , B. et al. ( 2012 ). MXene: a promising transition metal carbide anode for lithium-ion batteries . Electrochem. Commun. 16 ( 1 ): 61 – 64 . 10.1016/j.elecom.2012.01.002 CASWeb of Science®Google Scholar Lukatskaya , M.R. , Mashtalir , O. , Ren , C.E. et al. ( 2013 ). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide . Science (1979) 341 ( 6153 ): 1502 – 1505 . 10.1126/science.1241488 CASPubMedWeb of Science®Google Scholar Quinlan , R.A. , Cai , M. , Outlaw , R.A. et al. ( 2013 ). Investigation of defects generated in vertically oriented graphene . Carbon N Y 64 : 92 – 100 . 10.1016/j.carbon.2013.07.040 CASWeb of Science®Google Scholar Ghidiu , M. , Lukatskaya , M.R. , Zhao , M.-Q. et al. ( 2014 ). Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance . Nature 516 ( 7529 ): 78 – 81 . 10.1038/nature13970 CASPubMedWeb of Science®Google Scholar Okubo , M. , Sugahara , A. , Kajiyama , S. , and Yamada , A. ( 2018 ). MXene as a charge storage host . Acc. Chem. Res. 51 ( 3 ): 591 – 599 . 10.1021/acs.accounts.7b00481 CASPubMedWeb of Science®Google Scholar Mashtalir , O. , Lukatskaya , M.R. , Kolesnikov , A.I. et al. ( 2016 ). The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene) . Nanoscale 8 ( 17 ): 9128 – 9133 . 10.1039/C6NR01462C CASPubMedWeb of Science®Google Scholar Xie , Y. , Dall'Agnese , Y. , Naguib , M. et al. ( 2014 ). Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries . ACS Nano 8 ( 9 ): 9606 – 9615 . 10.1021/nn503921j CASPubMedWeb of Science®Google Scholar Benchakar , M. , Loupias , L. , Garnero , C. et al. ( 2020 ). One MAX phase, different MXenes: a guideline to understand the crucial role of etching conditions on Ti 3 C 2 T x surface chemistry . Appl. Surf. Sci. 530 : 147209 . 10.1016/j.apsusc.2020.147209 CASWeb of Science®Google Scholar Rasool , K. , Pandey , R.P. , Rasheed , P.A. et al. ( 2019 ). Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes) . Mater. Today 30 : 80 – 102 . 10.1016/j.mattod.2019.05.017 CASGoogle Scholar Verger , L. , Xu , C. , Natu , V. et al. ( 2019 ). Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides . Curr. Opin. Solid State Mater. Sci. 23 ( 3 ): 149 – 163 . 10.1016/j.cossms.2019.02.001 CASWeb of Science®Google Scholar Pang , S. , Io , W. , Wong , L. et al. ( 2020 ). Efficient energy conversion and storage based on robust fluoride-free self-assembled 1D niobium carbide in 3D nanowire network . Adv. Sci. 7 ( 10 ): 1903680 . 10.1002/advs.201903680 CASGoogle Scholar Seh , Z.W. , Fredrickson , K.D. , Anasori , B. et al. ( 2016 ). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution . ACS Energy Lett. 1 ( 3 ): 589 – 594 . 10.1021/acsenergylett.6b00247 CASWeb of Science®Google Scholar Ling , C. , Shi , L. , Ouyang , Y. , and Wang , J. ( 2016 ). Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor . Chem. Mater. 28 ( 24 ): 9026 – 9032 . 10.1021/acs.chemmater.6b03972 CASWeb of Science®Google Scholar Zhang , C.J. , Pinilla , S. , McEvoy , N. et al. ( 2017 ). Oxidation stability of colloidal two-dimensional titanium carbides (MXenes) . Chem. Mater. 29 ( 11 ): 4848 – 4856 . 10.1021/acs.chemmater.7b00745 CASWeb of Science®Google Scholar Zhang , C.(.J.). and Nicolosi , V. ( 2019 ). Graphene and MXene-based transparent conductive electrodes and supercapacitors . Energy Storage Mater. 16 : 102 – 125 . 10.1016/j.ensm.2018.05.003 Web of Science®Google Scholar Jian-Hui , Y. , Shao-Zheng , Z. , Jia-Lin , J. , and Shi-Hao , W. ( 2015 ). Adsorption activities of O, OH, F and Au on two-dimensional Ti 2 C and Ti 3 C 2 surfaces . Acta Phys. Chim. Sin. 31 ( 2 ): 369 – 376 . 10.3866/PKU.WHXB201412121 Google Scholar Zhang , X. , Xue , M. , Yang , X. et al. ( 2015 ). Preparation and tribological properties of Ti 3 C 2 (OH) 2 nanosheets as additives in base oil . RSC Adv. 5 ( 4 ): 2762 – 2767 . 10.1039/C4RA13800G CASGoogle Scholar Ronchi , R.M. , Arantes , J.T. , and Santos , S.F. ( 2019 ). Synthesis, structure, properties and applications of MXenes: current status and perspectives . Ceram. Int. 45 ( 15 ): 18167 – 18188 . 10.1016/j.ceramint.2019.06.114 CASWeb of Science®Google Scholar MXenes: Fundamentals and Applications ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助无语的惜芹采纳,获得10
1秒前
防易容发布了新的文献求助10
1秒前
An发布了新的文献求助10
2秒前
酷波er应助树123采纳,获得10
3秒前
4秒前
zhengxu完成签到,获得积分10
4秒前
5秒前
科研通AI5应助Yoke采纳,获得10
6秒前
6秒前
以鹿之路发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
10秒前
小橙子发布了新的文献求助10
10秒前
11秒前
如泣草芥发布了新的文献求助10
12秒前
鲜虾鱼板面完成签到,获得积分20
12秒前
13秒前
John完成签到 ,获得积分10
13秒前
虚幻的香彤完成签到,获得积分10
13秒前
SciEngineerX完成签到,获得积分10
14秒前
希音发布了新的文献求助10
14秒前
wocala发布了新的文献求助10
14秒前
乐乐发布了新的文献求助10
16秒前
万能图书馆应助sunidea采纳,获得10
16秒前
hq完成签到 ,获得积分10
17秒前
SciGPT应助An采纳,获得10
17秒前
防易容完成签到,获得积分10
22秒前
22秒前
qiuy发布了新的文献求助20
23秒前
23秒前
24秒前
Yoke发布了新的文献求助10
28秒前
如泣草芥完成签到,获得积分0
28秒前
研友_VZG7GZ应助wocala采纳,获得10
31秒前
Ava应助prozac采纳,获得10
32秒前
坚定的依瑶完成签到,获得积分10
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225