亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Accurate Approach for Predicting Soil Quality Based on Machine Learning in Drylands

质量(理念) 机器学习 环境科学 农业工程 人工智能 计算机科学 工程类 物理 量子力学
作者
Radwa A. El Behairy,Hasnaa M. El-Arwash,Ahmed A. El Baroudy,Mahmoud Ibrahim,Elsayed Said Mohamed,Nazih Y. Rebouh,Mohamed S. Shokr
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (4): 627-627 被引量:11
标识
DOI:10.3390/agriculture14040627
摘要

Nowadays, machine learning (ML) is a useful technology due to its high accuracy in constructing non-linear models and algorithms that can adapt to the complexity and diversity of data. Thus, the current work aimed to predict the soil quality index (SQI) from extensive soil data, achieving high accuracy with the artificial neural networks (ANN) model. However, the efficiency of ANN depends on the accuracy of the data that is prepared for training. For this purpose, MATLAB programming language was used to enable the calculation, classification, and compilation of the results into databases within a few minutes. The proposed MATLAB program was highly efficient, accurate, and quick in calculating soil big data for training the machine compared with traditional methods. The database contains 306 vector sets, 80% of them are used for training and the remaining 20% are reserved for testing. The optimal model obtained comprises one hidden layer with 250 neurons and one output layer with a sigmoid function. The ANN achieved a high coefficient of determination (R2) values for SQI estimation, with around 0.97 and 0.98 for training and testing, respectively. The results indicate that 36.93% of the total soil samples belonged to the very high quality class (C1). In contrast, the high quality (C2), moderate quality (C3), low quality (C4), and very low quality (C5) classes accounted for 10.46%, 31.37%, 20.92%, and 0.33% of the samples, respectively. The high contents of CaCO3, pH, sodium saturation, salinity, and clay content were identified as limiting factors in certain areas. The results of this study indicated high accuracy of soil quality assessment using physical, chemical, and fertility soil features in regression analysis with ANN. This method, which is suitable for arid zones, enhances agricultural productivity and decision-making by identifying critical soil quality categories and constraints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助yangbin710采纳,获得10
49秒前
54秒前
1分钟前
yangbin710发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
箴言Julius完成签到,获得积分10
2分钟前
毛姑朵花完成签到 ,获得积分10
2分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Zzz_Carlos完成签到 ,获得积分10
3分钟前
箴言Julius关注了科研通微信公众号
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
WU发布了新的文献求助10
5分钟前
小羊咩完成签到 ,获得积分0
5分钟前
浮游应助null采纳,获得10
5分钟前
5分钟前
6分钟前
爱思考的小笨笨完成签到,获得积分10
6分钟前
6分钟前
6分钟前
joanna完成签到,获得积分10
6分钟前
6分钟前
深情安青应助科研通管家采纳,获得10
7分钟前
牛幻香发布了新的文献求助10
7分钟前
7分钟前
ash_alice完成签到,获得积分10
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
科研通AI2S应助momo采纳,获得10
8分钟前
8分钟前
kuoping完成签到,获得积分0
8分钟前
zy完成签到,获得积分20
8分钟前
Hello应助科研通管家采纳,获得10
9分钟前
ZaZa完成签到,获得积分10
9分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682396
求助须知:如何正确求助?哪些是违规求助? 4057831
关于积分的说明 12545567
捐赠科研通 3753329
什么是DOI,文献DOI怎么找? 2072966
邀请新用户注册赠送积分活动 1101925
科研通“疑难数据库(出版商)”最低求助积分说明 981224