已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-based Radiomic Features for Improving Neoadjuvant Chemoradiation Response Prediction in Locally Advanced Rectal Cancer

新辅助治疗 肿瘤科 无线电技术 深度学习 计算机科学 内科学 卡培他滨
作者
Jie Fu,Xinran Zhong,Ning Li,Ritchell van Dams,John H. Lewis,Kyunghyun Sung,Ann C. Raldow,Jing Jin,S Qi
出处
期刊:arXiv: Medical Physics 被引量:1
标识
DOI:10.1088/1361-6560/ab7970
摘要

Radiomic features achieve promising results in cancer diagnosis, treatment response prediction, and survival prediction. Our goal is to compare the handcrafted (explicitly designed) and deep learning (DL)-based radiomic features extracted from pre-treatment diffusion-weighted magnetic resonance images (DWIs) for predicting neoadjuvant chemoradiation treatment (nCRT) response in patients with locally advanced rectal cancer (LARC). 43 patients receiving nCRT were included. All patients underwent DWIs before nCRT and total mesorectal excision surgery 6-12 weeks after completion of nCRT. Gross tumor volume (GTV) contours were drawn by an experienced radiation oncologist on DWIs. The patient-cohort was split into the responder group (n=22) and the non-responder group (n=21) based on the post-nCRT response assessed by postoperative pathology, MRI or colonoscopy. Handcrafted and DL-based features were extracted from the apparent diffusion coefficient (ADC) map of the DWI using conventional computer-aided diagnosis methods and a pre-trained convolution neural network, respectively. Least absolute shrinkage and selection operator (LASSO)-logistic regression models were constructed using extracted features for predicting treatment response. The model performance was evaluated with repeated 20 times stratified 4-fold cross-validation using receiver operating characteristic (ROC) curves and compared using the corrected resampled t-test. The model built with handcrafted features achieved the mean area under the ROC curve (AUC) of 0.64, while the one built with DL-based features yielded the mean AUC of 0.73. The corrected resampled t-test on AUC showed P-value < 0.05. DL-based features extracted from pre-treatment DWIs achieved significantly better classification performance compared with handcrafted features for predicting nCRT response in patients with LARC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oboy应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
刚刚
李健的小迷弟应助MOMOMOMO采纳,获得10
2秒前
充盈缺损完成签到,获得积分20
2秒前
3秒前
甜甜圈完成签到,获得积分10
6秒前
无花果应助独特靖巧采纳,获得10
15秒前
22秒前
JamesPei应助xxx采纳,获得10
25秒前
san行发布了新的文献求助10
27秒前
tonghau895完成签到 ,获得积分10
28秒前
28秒前
29秒前
甜甜圈发布了新的文献求助10
38秒前
39秒前
CodeCraft应助单纯的乌冬面采纳,获得10
40秒前
41秒前
an12138发布了新的文献求助10
43秒前
43秒前
fengyl关注了科研通微信公众号
45秒前
无聊的月饼完成签到 ,获得积分10
46秒前
47秒前
Cathy关注了科研通微信公众号
47秒前
希望天下0贩的0应助Superg采纳,获得10
49秒前
QZ完成签到,获得积分10
52秒前
53秒前
菜鸟发布了新的文献求助30
53秒前
lynn完成签到,获得积分10
55秒前
aeyang发布了新的文献求助10
59秒前
59秒前
59秒前
菜鸟完成签到,获得积分20
1分钟前
李爱国应助667788采纳,获得10
1分钟前
张娇发布了新的文献求助10
1分钟前
Cathy发布了新的文献求助10
1分钟前
1分钟前
667788发布了新的文献求助10
1分钟前
烂漫吐司应助卡卡咧咧采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343717
关于积分的说明 10317435
捐赠科研通 3060495
什么是DOI,文献DOI怎么找? 1679566
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295