亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a deep learning-based image processing technique for bubble pattern recognition and shape reconstruction in dense bubbly flows

气泡 卷积神经网络 人工智能 计算机科学 亮度 计算机视觉 模式识别(心理学) 算法 光学 物理 并行计算
作者
Rafael Franklin Lázaro de Cerqueira,Emilio Paladino
出处
期刊:Chemical Engineering Science [Elsevier BV]
卷期号:230: 116163-116163 被引量:75
标识
DOI:10.1016/j.ces.2020.116163
摘要

This work presents a Convolutional Neural Network (CNN) based method for the shape reconstruction of bubbles in bubbly flows using high-speed camera images. The bubble identification and shape reconstruction adopted a methodology based on a set of anchor points and boxes, where a single anchor point is used for different anchor boxes with various sizes. These anchor points are determined, based on the internal features of the bubble images, which are more easily identifiable, in particular, in regions of the images with high bubble overlapping. This makes possible the application of the procedure to high void fraction bubbly flows. For a given anchor point, different ellipsoidal shapes are suggested as bubble shape candidates and are then correctly chosen by a trained CNN. The CNN training used labeled images from air–water system data set and a hyper-parameter analysis was performed to find the best configuration of the CNN architecture. From this optimal CNN architecture, different high-speed camera acquisitions of bubbly flows were analyzed by the CNN-based bubble shape reconstruction method. In order to gain a better comprehension of the method, experiments were conducted in two gas–liquid systems, air–water and air-aqueous glycerol solution, which resulted in different image parameters, such as brightness, contrast and edge definition. The CNN method trained only with air–water data, showed excellent performance in the cases with air-aqueous glycerol, demonstrating its generalization capability. In addition, the results showed that the deep learning method used in this work is able to detect most of the bubbles present in the high-speed camera images, even in dense bubbly flow configurations. The method developed in this work can be used to further analyze bubbly flows and generate experimental data for the implementation and validation of CFD models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyhyhyhy发布了新的文献求助10
2秒前
16秒前
Waris完成签到 ,获得积分10
19秒前
22秒前
26秒前
35秒前
NexusExplorer应助天真咖啡豆采纳,获得10
35秒前
52秒前
56秒前
科研通AI5应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
隐形曼青应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得50
1分钟前
科研通AI5应助www采纳,获得50
1分钟前
科研通AI5应助www采纳,获得50
1分钟前
科研通AI5应助www采纳,获得50
1分钟前
hky完成签到 ,获得积分10
1分钟前
科研通AI5应助天真咖啡豆采纳,获得10
1分钟前
所所应助泥巴采纳,获得10
1分钟前
HCCha完成签到,获得积分10
1分钟前
1分钟前
谨慎开山发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
longsiping发布了新的文献求助10
1分钟前
思源应助天真咖啡豆采纳,获得10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
bc应助科研通管家采纳,获得20
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
longsiping完成签到,获得积分20
1分钟前
凶狠的秀发完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346429
关于积分的说明 10329299
捐赠科研通 3062988
什么是DOI,文献DOI怎么找? 1681276
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763713