Hand–object configuration estimation using particle filters for dexterous in-hand manipulation

欠驱动 抓住 对象(语法) 计算机科学 估计员 人工智能 计算机视觉 滤波器(信号处理) 颗粒过滤器 姿势 控制理论(社会学) 机器人 控制(管理) 数学 统计 程序设计语言
作者
Kaiyu Hang,Walter G. Bircher,Andrew S. Morgan,Aaron M. Dollar
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:39 (14): 1760-1774 被引量:15
标识
DOI:10.1177/0278364919883343
摘要

We consider the problem of in-hand dexterous manipulation with a focus on unknown or uncertain hand–object parameters, such as hand configuration, object pose within hand, and contact positions. In particular, in this work we formulate a generic framework for hand–object configuration estimation using underactuated hands as an example. Owing to the passive reconfigurability and the lack of encoders in the hand’s joints, it is challenging to estimate, plan, and actively control underactuated manipulation. By modeling the grasp constraints, we present a particle filter-based framework to estimate the hand configuration. Specifically, given an arbitrary grasp, we start by sampling a set of hand configuration hypotheses and then randomly manipulate the object within the hand. While observing the object’s movements as evidence using an external camera, which is not necessarily calibrated with the hand frame, our estimator calculates the likelihood of each hypothesis to iteratively estimate the hand configuration. Once converged, the estimator is used to track the hand configuration in real time for future manipulations. Thereafter, we develop an algorithm to precisely plan and control the underactuated manipulation to move the grasped object to desired poses. In contrast to most other dexterous manipulation approaches, our framework does not require any tactile sensing or joint encoders, and can directly operate on any novel objects, without requiring a model of the object a priori. We implemented our framework on both the Yale Model O hand and the Yale T42 hand. The results show that the estimation is accurate for different objects, and that the framework can be easily adapted across different underactuated hand models. In the end, we evaluated our planning and control algorithm with handwriting tasks, and demonstrated the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘玉梅完成签到,获得积分10
1秒前
vffg完成签到,获得积分10
1秒前
CodeCraft应助dennisysz采纳,获得10
2秒前
在水一方应助dennisysz采纳,获得10
2秒前
华仔应助dennisysz采纳,获得10
2秒前
2秒前
乐乐应助dennisysz采纳,获得10
2秒前
在水一方应助dennisysz采纳,获得10
2秒前
桐桐应助dennisysz采纳,获得10
2秒前
隐形曼青应助dennisysz采纳,获得10
2秒前
酷波er应助dennisysz采纳,获得10
2秒前
斯文败类应助dennisysz采纳,获得10
2秒前
XZZH完成签到,获得积分10
3秒前
4秒前
默默忆山完成签到,获得积分10
5秒前
8秒前
river123发布了新的文献求助10
8秒前
李爱国应助dennisysz采纳,获得10
9秒前
Orange应助dennisysz采纳,获得10
9秒前
香蕉觅云应助dennisysz采纳,获得10
9秒前
华仔应助dennisysz采纳,获得10
9秒前
Ava应助dennisysz采纳,获得10
9秒前
所所应助dennisysz采纳,获得10
9秒前
Owen应助dennisysz采纳,获得10
9秒前
共享精神应助dennisysz采纳,获得10
9秒前
脑洞疼应助dennisysz采纳,获得10
9秒前
9秒前
木木杨发布了新的文献求助10
11秒前
12秒前
13秒前
Steven发布了新的文献求助10
14秒前
river123完成签到,获得积分10
14秒前
JamesPei应助dennisysz采纳,获得10
15秒前
可爱的函函应助dennisysz采纳,获得10
15秒前
彭于晏应助dennisysz采纳,获得10
15秒前
Orange应助dennisysz采纳,获得10
15秒前
烟花应助dennisysz采纳,获得10
15秒前
ding应助dennisysz采纳,获得10
15秒前
汉堡包应助dennisysz采纳,获得10
15秒前
Ava应助dennisysz采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133