Detection of Focal and Non-focal Epileptic Seizure Using Continuous Wavelet Transform-Based Scalogram Images and Pre-trained Deep Neural Networks

脑电图 人工智能 癫痫 卷积神经网络 模式识别(心理学) 癫痫发作 计算机科学 小波 小波变换 心理学 神经科学
作者
Ali Narin
出处
期刊:Irbm [Elsevier BV]
卷期号:43 (1): 22-31 被引量:58
标识
DOI:10.1016/j.irbm.2020.11.002
摘要

Abstract Epilepsy is a neurological disease from which a large number of younger and older people suffer all over the world. The status of the patients is primarily examined by using Electroencephalogram (EEG) signals. The most important part for successful surgery is to locate the epileptic seizure in the brain. For this reason, it is very useful to detect the seizure area automatically before surgery. In this research, a novel method based on continuous wavelet transform (CWT) and two-dimensional (2D) convolutional neural networks (CNNs) has been proposed to predict focal and non-focal epileptic seizure. The AlexNet, InceptionV3, Inception-ResNetV2, ResNet50 and VGG16 pre-trained models have been used to automatically classify 2D-scalogram images into focal and non-focal epileptic seizure. The performances of 5 pre-trained models were compared and the detection results of 2D-scalograms were examined. The best classification accuracy of 92.27% is yielded by the InceptionV3 model among the other used four pre-trained models. As a result, it may be said that the pre-trained models and 2D-scalogram images of focal and non-focal EEG signals will be useful to neurologists for rapid and robust prediction epileptic seizure before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
城南完成签到,获得积分10
2秒前
2秒前
7秒前
8秒前
8秒前
9秒前
10秒前
yahonyoyoyo发布了新的文献求助10
11秒前
方强发布了新的文献求助10
12秒前
keyantong发布了新的文献求助10
13秒前
14秒前
15秒前
认真的彩虹完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助30
17秒前
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
18秒前
18秒前
东方樱应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得30
18秒前
彭于晏应助科研通管家采纳,获得10
19秒前
科奇应助科研通管家采纳,获得10
19秒前
pcr163应助科研通管家采纳,获得30
19秒前
Jiang应助科研通管家采纳,获得10
19秒前
pcr163应助科研通管家采纳,获得30
19秒前
彭于彦祖应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
自信问枫完成签到,获得积分10
19秒前
赖如豹应助科研通管家采纳,获得10
19秒前
shiqiang mu应助科研通管家采纳,获得10
19秒前
pcr163应助科研通管家采纳,获得30
19秒前
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864393
求助须知:如何正确求助?哪些是违规求助? 3406788
关于积分的说明 10651271
捐赠科研通 3130707
什么是DOI,文献DOI怎么找? 1726548
邀请新用户注册赠送积分活动 831812
科研通“疑难数据库(出版商)”最低求助积分说明 780020