Development of Novel Deep Multimodal Representation Learning-based Model for the Differentiation of Liver Tumors on B-Mode Ultrasound Images

卷积神经网络 深度学习 模式治疗法 人工智能 代表(政治) 计算机科学 模式识别(心理学) 超声波 肝肿瘤 医学 放射科 内科学 政治 政治学 肝细胞癌 法学
作者
Masaya Sato,Tamaki Kobayashi,Yoko Soroida,Takashi Tanaka,T. Nakatsuka,Hayato Nakagawa,Ayaka Nakamura,Makoko Kurihara,Momoe Endo,Hiromi Hikita,Mamiko Sato,Hiroaki Gotoh,Tomomi Iwai,Ryosuke Tateishi,Kazuhiko Koike,Yutaka Yatomi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-143117/v1
摘要

Abstract Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention due to the possibility of combining latent features using a single distribution. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets (479 benign and 493 malignant nodules), to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules, including 53 benign and 55 malignant tumors. Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background such as age or sex and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, AST, ALT, platelet count, and albumin data) reached 96.30% and 0.994, respectively. Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool that can effectively support the definitive diagnosis of liver tumors using B-mode US in daily clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助suyi采纳,获得10
1秒前
忧郁觅柔完成签到,获得积分10
4秒前
喜悦发布了新的文献求助10
4秒前
CipherSage应助racill采纳,获得10
4秒前
许安发布了新的文献求助10
5秒前
02完成签到,获得积分10
5秒前
5秒前
小颂关注了科研通微信公众号
5秒前
科研通AI5应助whh123采纳,获得10
6秒前
zhang1119完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
nnnick完成签到,获得积分0
8秒前
MQhhh完成签到,获得积分10
9秒前
MinQi应助岳小龙采纳,获得10
9秒前
白垩纪完成签到,获得积分10
10秒前
支雨泽发布了新的文献求助10
10秒前
osmanthus应助忧郁觅柔采纳,获得10
10秒前
SYLH应助坚强雪碧采纳,获得10
11秒前
11秒前
ewyzero应助Clovis33采纳,获得10
11秒前
默默的皮牙子应助Clovis33采纳,获得10
11秒前
北冰石完成签到,获得积分10
11秒前
七漆发布了新的文献求助100
12秒前
13秒前
jl发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
执着的紫易应助kk采纳,获得10
16秒前
anbiii发布了新的文献求助10
16秒前
惠飞薇完成签到 ,获得积分10
17秒前
123发布了新的文献求助10
17秒前
南瓜汤完成签到,获得积分10
17秒前
19秒前
十二发布了新的文献求助50
19秒前
20秒前
章访曼发布了新的文献求助10
20秒前
英俊的铭应助极品小亮采纳,获得10
20秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820938
求助须知:如何正确求助?哪些是违规求助? 3363863
关于积分的说明 10425692
捐赠科研通 3082312
什么是DOI,文献DOI怎么找? 1695498
邀请新用户注册赠送积分活动 815147
科研通“疑难数据库(出版商)”最低求助积分说明 768982