River body extraction from sentinel-2A/B MSI images based on an adaptive multi-scale region growth method

遥感 萃取(化学) 计算机科学 环境科学 计算机视觉 地质学 比例(比率) 地理 地图学 色谱法 化学
作者
Song Jin,Yongxue Liu,Sergio Fagherazzi,Huan Mi,Gang Qiao,Wenxuan Xu,Chao Sun,Yongchao Liu,Bingxue Zhao,Cédric G. Fichot
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:255: 112297-112297 被引量:39
标识
DOI:10.1016/j.rse.2021.112297
摘要

Abstract River networks are important water carriers that provide a multitude of ecosystem services, including freshwater for agriculture, drinking water for cities, and recreational activities. Accurate mapping of river networks from remote-sensing images is important for the study of these systems. Unfortunately, the delineation of river networks is challenging due to the meandering nature of river channels, the often complex and variable features of the surrounding landscape, and the spatial heterogeneity of the river networks. Here, we present an adaptive, multi-scale region growth method (AMRGM) to delineate river networks from sentinel-2A/B MSI images. The method can handle variable river heterogeneous surroundings, multiple spatial scales, and variable curvatures of the river channels. The method includes four steps: (1) a water index (NDWI) is used to provide initial detection of river water pixels in the image; (2) a bias-corrected fuzzy C-means (BCFCM) method alleviates the effects of the variable surrounding landscape; (3) a scale-enhancement algorithm based on the hessian matrix makes full use of scale and direction information to enhance river morphology characteristics (multiple dimensions and variable curvatures), and (4) a regional growth criterion facilitates handling of various river dimensions. Fast-growing and fine-screening strategies are also included in the AMRGM. The method is applied to eight river networks to evaluate its accuracy and reliability with various river morphologies and hydrological conditions. The AMRGM is more widely applicable than four commonly used river-detection methods (i.e., K-means method, maximum likelihood method, iterative self-organizing data analysis technique algorithm, and support vector machine) and outperform these methods when detecting multi-scale river branches. The mean overall accuracy (OA) and kappa coefficients (KC) of the AMRGM exceed 97% and 0.92 across the eight river networks. The most accurate river extractions are obtained for large rivers such as the Amazon River, Mackenzie River, and Ganges River Delta, which have more discernable scale and direction characteristics. Relatively high omission and commission errors are observed in river networks with complex and heterogeneous zonations, such as the river Welland, UK, and the Zagya Zangbo River in the Tibet plateau. The complex geomorphic features of the river Welland reduce OA and KC to 93.8% and 0.86, respectively
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的孤丹完成签到 ,获得积分10
1秒前
hover发布了新的文献求助10
2秒前
体贴的叛逆者完成签到,获得积分10
5秒前
yingw驳回了Ava应助
6秒前
jason完成签到 ,获得积分10
22秒前
MYMELODY完成签到,获得积分10
22秒前
彭彭蓬完成签到 ,获得积分20
23秒前
科研通AI5应助盈盈采纳,获得30
24秒前
兴奋小丸子完成签到,获得积分10
26秒前
依依完成签到,获得积分10
26秒前
米博士完成签到,获得积分10
27秒前
梓唯忧完成签到 ,获得积分10
28秒前
czzlancer完成签到,获得积分10
31秒前
伶俐的语雪完成签到,获得积分10
35秒前
材1完成签到 ,获得积分10
36秒前
36秒前
momo发布了新的文献求助10
43秒前
Lucas应助momo采纳,获得10
49秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
52秒前
青牛完成签到,获得积分10
54秒前
呆萌芙蓉完成签到 ,获得积分10
55秒前
兰瓜瓜完成签到,获得积分10
58秒前
Moonchild完成签到 ,获得积分10
1分钟前
1分钟前
肖燕完成签到 ,获得积分10
1分钟前
沐浠完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
大道要熬发布了新的文献求助100
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
小张完成签到 ,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
Autumn发布了新的文献求助10
1分钟前
zhugao完成签到,获得积分10
1分钟前
爆米花应助Autumn采纳,获得10
1分钟前
fhz完成签到,获得积分10
1分钟前
明理念桃完成签到 ,获得积分10
1分钟前
1分钟前
MaYi完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344090
关于积分的说明 10318508
捐赠科研通 3060649
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353