生物转化
固定化酶
钴
纳米颗粒
化学
酶
催化作用
金属有机骨架
生物催化
磁性纳米粒子
化学工程
材料科学
纳米技术
有机化学
发酵
吸附
离子液体
工程类
作者
Kai Xue,Chunli Liu,Yankun Yang,Xiuxia Liu,Jinling Zhan,Zhonghu Bai
标识
DOI:10.1007/s11274-022-03330-4
摘要
D-allulose is a rare low-calorie sugar that has many fundamental biological functions. D-allulose 3-epimerase from Agrobacterium tumefaciens (AT-DAEase) catalyzes the conversion of D-fructose to D-allulose. The enzyme has attracted considerable attention because of its mild catalytic properties. However, the bioconversion efficiency and reusability of AT-DAEase limit its industrial application. Magnetic metal-organic frameworks (MOFs) have uniform pore sizes and large surface areas and can facilitate mass transport and enhance the capacity for enzyme immobilization. Here, we successfully encapsulated cobalt-type AT-DAEase into the cobalt-based magnetic MOF ZIF-67@Fe3O4 using a self-assembly strategy. We confirmed the immobilization of enzyme AT-DAEase and characterized the enzymatic properties of the MOF-immobilized AT-DAEase@ZIF-67@Fe3O4. The AT-DAEase@ZIF-67@Fe3O4 nanoparticles had higher catalytic activity (65.1 U mg-1) and bioconversion ratio (38.1%) than the free AT-DAEase. The optimal conditions for maximum enzyme activity of the AT-DAEase@ZIF-67@Fe3O4 nanoparticles were 55 °C and pH 8.0, which were significantly higher than those of the free AT-DAEase (50 °C and pH 7.5). The AT-DAEase@ZIF-67@Fe3O4 nanoparticles displayed significantly improved thermal stability and excellent recycling performance, with 80% retention of enzyme activity at a temperature range of 45-70 °C and > 45% of its initial activity after eight cycles of enzyme use. The AT-DAEase@ZIF-67@Fe3O4 nanoparticles have great potential for large-scale industrial preparation of D-allulose by immobilizing cobalt-type AT-DAEase into magnetic MOF ZIF-67@Fe3O4.
科研通智能强力驱动
Strongly Powered by AbleSci AI