Breast cancer detection using artificial intelligence techniques: A systematic literature review

乳腺癌 癌症 人工智能 深度学习 医学 疾病 乳腺摄影术 计算机科学 机器学习 医学物理学 病理 内科学
作者
Ali Bou Nassif,Manar Abu Talib,Qassim Nasir,Yaman Afadar,Omar Elgendy
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:127: 102276-102276 被引量:226
标识
DOI:10.1016/j.artmed.2022.102276
摘要

Cancer is one of the most dangerous diseases to humans, and yet no permanent cure has been developed for it. Breast cancer is one of the most common cancer types. According to the National Breast Cancer Foundation, in 2020 alone, more than 276,000 new cases of invasive breast cancer and more than 48,000 non-invasive cases were diagnosed in the US. To put these figures in perspective, 64% of these cases are diagnosed early in the disease's cycle, giving patients a 99% chance of survival. Artificial intelligence and machine learning have been used effectively in detection and treatment of several dangerous diseases, helping in early diagnosis and treatment, and thus increasing the patient's chance of survival. Deep learning has been designed to analyze the most important features affecting detection and treatment of serious diseases. For example, breast cancer can be detected using genes or histopathological imaging. Analysis at the genetic level is very expensive, so histopathological imaging is the most common approach used to detect breast cancer. In this research work, we systematically reviewed previous work done on detection and treatment of breast cancer using genetic sequencing or histopathological imaging with the help of deep learning and machine learning. We also provide recommendations to researchers who will work in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助jasmine采纳,获得30
刚刚
刚刚
pharpan完成签到,获得积分20
刚刚
haosu驳回了大个应助
1秒前
LaTeXer应助buno采纳,获得200
2秒前
2秒前
2秒前
ago发布了新的文献求助10
3秒前
ZQ完成签到,获得积分10
4秒前
可靠寒云完成签到,获得积分10
4秒前
冷静纸飞机完成签到 ,获得积分20
5秒前
6秒前
xiaolaohu发布了新的文献求助10
9秒前
Lx_B完成签到,获得积分10
10秒前
树德完成签到,获得积分10
10秒前
爱听歌的寄云完成签到 ,获得积分10
10秒前
10秒前
明亮中心完成签到,获得积分10
11秒前
beleve发布了新的文献求助10
11秒前
11秒前
12秒前
郭老师发布了新的文献求助50
12秒前
ZZQ完成签到,获得积分10
12秒前
13秒前
FashionBoy应助人间惆怅客采纳,获得10
14秒前
bkagyin应助开朗的尔风采纳,获得10
14秒前
SciGPT应助喝杯水再走采纳,获得30
15秒前
15秒前
海带先生完成签到,获得积分10
16秒前
houruibut发布了新的文献求助10
16秒前
xxi发布了新的文献求助10
17秒前
17秒前
小姚发布了新的文献求助10
18秒前
上官若男应助碧落采纳,获得10
18秒前
20秒前
暮光不ling完成签到,获得积分10
21秒前
22秒前
扶摇完成签到 ,获得积分10
22秒前
阿智完成签到,获得积分20
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726526
求助须知:如何正确求助?哪些是违规求助? 4083718
关于积分的说明 12629857
捐赠科研通 3790124
什么是DOI,文献DOI怎么找? 2093145
邀请新用户注册赠送积分活动 1118875
科研通“疑难数据库(出版商)”最低求助积分说明 995311