Probability Density Prediction of Wind Farm Power Generation: Benchmarking Natural Gradient Boosting Approach Using Ensemble Weather Forecast

Boosting(机器学习) 梯度升压 标杆管理 气象学 环境科学 集合预报 天气预报 随机森林 计算机科学 人工智能 地理 经济 管理
作者
Yu Fujimoto,Daisuke Nohara,Yuki Kanno,Masamich Ohba,Takuma Kato,Yasuhiro Hayashi
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:4
标识
DOI:10.2139/ssrn.4097480
摘要

Wind farm (WF) power generation fluctuates depending on the direction and speed of wind. Its prediction has been recognized as an essential elemental technology for grid connections of wind power generation. In particular, a quantitative understanding of the uncertainties in the prediction results is significantly important for designing the operational logic of energy management systems to compensate the unexpected behavior of WF power generation by means of alternative power sources and energy storage systems with appropriate capacities. This study focuses on the difficulties in the statistical learning of prediction models, which have hindered the realization of accurate probability density predictions (PDPs) using large-scale multidimensional data, such as the wind vector field derived using numerical weather prediction (NWP) models, in the PDP task of WF power generation, and discusses a prediction scheme that applies a nonparametric machine learning model based on the concept of natural gradient boosting, which is expected to contribute to overcoming this learning difficulty. This approach effectively uses high-dimensional information obtained from ensemble weather forecasting (EWF) and latest observations to achieve a plausible PDP of WF power generation. The agreement of the results of numerical experiments with data acquired from real-world sites demonstrate the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
得意黑完成签到,获得积分10
2秒前
Jasper应助yu采纳,获得10
2秒前
3秒前
3秒前
大气艳一完成签到,获得积分10
3秒前
3秒前
合适惜筠发布了新的文献求助10
5秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
酷波er应助Bonbon采纳,获得10
6秒前
jopaul发布了新的文献求助10
6秒前
Agnes发布了新的文献求助10
6秒前
kyrrt发布了新的文献求助10
6秒前
6秒前
7秒前
Rv完成签到,获得积分10
7秒前
8秒前
科研通AI6应助背后寒烟采纳,获得10
8秒前
BBBrucella发布了新的文献求助10
8秒前
xiayiyi发布了新的文献求助10
8秒前
科研小白发布了新的文献求助10
8秒前
TT发布了新的文献求助50
9秒前
wkc完成签到,获得积分10
9秒前
10秒前
杨山坡完成签到 ,获得积分10
10秒前
你我山巅自相逢完成签到 ,获得积分10
11秒前
11秒前
SY发布了新的文献求助10
11秒前
默默书竹发布了新的文献求助10
11秒前
ziziforever发布了新的文献求助10
12秒前
12秒前
13秒前
Author发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655431
求助须知:如何正确求助?哪些是违规求助? 4798844
关于积分的说明 15072796
捐赠科研通 4813848
什么是DOI,文献DOI怎么找? 2575363
邀请新用户注册赠送积分活动 1530745
关于科研通互助平台的介绍 1489386