Machine learning and radiomics for the prediction of multidrug resistance in cavitary pulmonary tuberculosis: a multicentre study

医学 无线电技术 队列 肺结核 回顾性队列研究 神经组阅片室 内科学
作者
Ye Li,Bing Wang,Limin Wen,Hengxing Li,Fang He,Jian Wu,Shan Gao,Dailun Hou
出处
期刊:European Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s00330-022-08997-9
摘要

ObjectivesMultidrug-resistant tuberculosis (MDR-TB) is a major challenge to global health security. Early identification of MDR-TB patients increases the likelihood of treatment success and interrupts transmission. We aimed to develop a predictive model for MDR to cavitary pulmonary TB using CT radiomics features.MethodsThis retrospective study included 257 consecutive patients with proven active cavitary TB (training cohort: 187 patients from Beijing Chest Hospital; testing cohort: 70 patients from Infectious Disease Hospital of Heilongjiang Province). Radiomics features were extracted from the segmented cavitation. A radiomics model was constructed to predict MDR using a random forest classifier. Meaningful clinical characteristics and subjective CT findings comprised the clinical model. The radiomics and clinical models were combined to create a combined model. ROC curves were used to validate the capability of the models in the training and testing cohorts.ResultsTwenty-one radiomics features were selected as optimal predictors to build the model for predicting MDR-TB. The AUCs of the radiomics model were significantly higher than those of the clinical model in either the training cohort (0.844 versus 0.589, p < 0.05) or the testing cohort (0.829 versus 0.500, p < 0.05). The AUCs of the radiomics model were slightly lower than those of the combined model in the training cohort (0.844 versus 0.881, p > 0.05) and testing cohort (0.829 versus 0.834, p > 0.05), but there was no significant difference.ConclusionsThe radiomics model has the potential to predict MDR in cavitary TB patients and thus has the potential to be a diagnostic tool.Key Points • This is the first study to build and validate models that distinguish MDR-TB from DS-TB with clinical and radiomics features based on cavitation. • The radiomics model demonstrated good performance and might potentially aid in prior TB characterisation treatment. • This noninvasive and convenient technique can be used as a diagnosis tool into routine clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
95发布了新的文献求助30
刚刚
科研通AI2S应助asd0817采纳,获得10
1秒前
bym发布了新的文献求助10
2秒前
xc完成签到,获得积分10
2秒前
2秒前
2秒前
Chao123_发布了新的文献求助10
3秒前
充电宝应助Mandy采纳,获得10
4秒前
5秒前
DW关注了科研通微信公众号
5秒前
6秒前
llmmnn完成签到,获得积分10
6秒前
wu发布了新的文献求助10
6秒前
十三发布了新的文献求助10
6秒前
6秒前
科目三应助旺旺大李包采纳,获得10
7秒前
欢喜雪瑶发布了新的文献求助10
7秒前
传奇3应助yyyyyyyyyy采纳,获得10
9秒前
科研通AI2S应助xu_teng采纳,获得10
9秒前
10秒前
gaodayu发布了新的文献求助10
10秒前
爆米花应助mmnn采纳,获得10
10秒前
深见发布了新的文献求助10
12秒前
SciGPT应助人不犯二枉少年采纳,获得10
12秒前
12秒前
bubbles发布了新的文献求助10
12秒前
ZhouYW应助开心采纳,获得20
13秒前
酷波er应助bym采纳,获得10
14秒前
wu完成签到,获得积分10
14秒前
三只保全完成签到,获得积分10
15秒前
TszPok完成签到,获得积分10
15秒前
所所应助哼哼采纳,获得10
16秒前
巳巳如意丶完成签到,获得积分10
16秒前
李峰发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
斯人发布了新的文献求助10
17秒前
19秒前
丘比特应助Awei采纳,获得10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806767
求助须知:如何正确求助?哪些是违规求助? 3351517
关于积分的说明 10354367
捐赠科研通 3067322
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809699
科研通“疑难数据库(出版商)”最低求助积分说明 765606