Orientation-Aware Feature Fusion Network for Ship Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 方向(向量空间) 背景(考古学) 特征提取 计算机视觉 特征(语言学) 最小边界框 编码(集合论) 块(置换群论) 模式识别(心理学) 图像(数学) 地理 数学 语言学 哲学 几何学 集合(抽象数据类型) 程序设计语言 考古
作者
Ming Zhao,Jiaxian Shi,Yongjian Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:9
标识
DOI:10.1109/lgrs.2022.3145039
摘要

Recently, deep learning methods have been successfully applied to the ship detection in synthetic aperture radar (SAR) images. It is still a great challenge to detect SAR ships, due to the extremely poor image quality and complex background. To solve the problems, a novel method named orientation-aware feature fusion network (OFF-Net) for ship detection in SAR images is proposed in this letter. OFF-Net consists of global context path aggregation (GCPA) module and local rotated contrast enhance (LRCE) module, which fuses the global and local information in feature extraction. First, GCPA module is explored to integrate the global context block with path aggregation network (PAN) to learn the global background information. Second, by designing a rotation scheme based on feature map cyclic shift with four directions, LRCE module is developed to enhance the targets and suppress the background clutters in SAR images. Finally, a decoupled orientation-aware head is proposed to handle the arbitrarily rotated ships more robustly and alleviate the conflict between classification and regression tasks during detection. In addition, a high-resolution SAR-ship detection dataset (OBB-HRSDD) with rotatable bounding boxes is provided. The detection results on the SAR ship detection dataset (SSDD+) and OBB-HRSDD illustrate that our method outperforms all the compared methods. The code and OBB-HRSDD are released at https://github.com/SJX152/papercode
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄紫红发布了新的文献求助10
1秒前
1秒前
归尘发布了新的文献求助10
1秒前
家伟发布了新的文献求助10
4秒前
知了发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
隐形曼青应助小熊采纳,获得10
7秒前
8秒前
SYLH应助彩虹海采纳,获得10
9秒前
zzy发布了新的文献求助10
10秒前
11秒前
11秒前
大模型应助小黄采纳,获得10
12秒前
12秒前
lucas发布了新的文献求助10
14秒前
ziyaoxu完成签到,获得积分10
14秒前
Sally发布了新的文献求助10
16秒前
陈鸿can发布了新的文献求助30
17秒前
18秒前
19秒前
19秒前
喜悦的妙芙关注了科研通微信公众号
20秒前
Gypsy完成签到 ,获得积分10
23秒前
23秒前
小熊发布了新的文献求助10
23秒前
24秒前
24秒前
ziyaoxu发布了新的文献求助50
25秒前
黄雅静关注了科研通微信公众号
25秒前
小黄发布了新的文献求助10
25秒前
彩虹海完成签到,获得积分10
25秒前
28秒前
29秒前
听话的捕发布了新的文献求助30
29秒前
充电宝应助小熊采纳,获得10
31秒前
陈鸿can完成签到,获得积分10
32秒前
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798061
求助须知:如何正确求助?哪些是违规求助? 3343561
关于积分的说明 10316564
捐赠科研通 3060257
什么是DOI,文献DOI怎么找? 1679407
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763244