Predicting myocardial infarction through retinal scans and minimal personal information

医学 心肌梗塞 心脏病学 视网膜 内科学 糖尿病性视网膜病变 视网膜病变 眼科 糖尿病 内分泌学
作者
Andrés Diaz-Pinto,Nishant Ravikumar,Rahman Attar,Avan Suinesiaputra,Yitian Zhao,Eylem Levelt,Erica Dall’Armellina,Marco Lorenzi,Qingyu Chen,Tiarnán D L Keenan,Elvira Agrón,Emily Y. Chew,Zhiyong Lu,Chris P Gale,Richard Gale,Sven Plein,Alejandro F. Frangi
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (1): 55-61 被引量:66
标识
DOI:10.1038/s42256-021-00427-7
摘要

In ophthalmologic practice, retinal images are routinely obtained to diagnose and monitor primary eye diseases and systemic conditions affecting the eye, such as diabetic retinopathy. Recent studies have shown that biomarkers on retinal images, for example, retinal blood vessel density or tortuosity, are associated with cardiac function and may identify patients at risk of coronary artery disease. In this work we investigate the use of retinal images, alongside relevant patient metadata, to estimate left ventricular mass and left ventricular end-diastolic volume, and subsequently, predict incident myocardial infarction. We trained a multichannel variational autoencoder and a deep regressor model to estimate left ventricular mass (4.4 (–32.30, 41.1) g) and left ventricular end-diastolic volume (3.02 (–53.45, 59.49) ml) and predict risk of myocardial infarction (AUC = 0.80 ± 0.02, sensitivity = 0.74 ± 0.02, specificity = 0.71 ± 0.03) using just the retinal images and demographic data. Our results indicate that one could identify patients at high risk of future myocardial infarction from retinal imaging available in every optician and eye clinic. Routine eye clinic imaging could help screen patients with cardiovascular risk as studies indicate strong associations between biomarkers in the retina and the heart. This potential is supported by a multimodal study, employing a deep learning model, that can infer cardiac functional indices based on retinal images and demographic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助hong采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
Maestro_S应助科研通管家采纳,获得10
8秒前
Maestro_S应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
思源应助MRM采纳,获得10
8秒前
9秒前
认真的代柔完成签到,获得积分10
9秒前
科研通AI5应助搞怪的熠彤采纳,获得10
9秒前
SciGPT应助BaodaGUODNG采纳,获得10
10秒前
科研通AI2S应助唠叨的以柳采纳,获得10
11秒前
今后应助复杂的南烟采纳,获得10
12秒前
13秒前
14秒前
14秒前
dropofwater完成签到,获得积分10
15秒前
15秒前
852应助liuxh123采纳,获得10
15秒前
大分子完成签到,获得积分10
16秒前
安静的瑾瑜完成签到 ,获得积分10
17秒前
鱼鱼鱼发布了新的文献求助10
17秒前
洗剪吹发布了新的文献求助10
17秒前
Ava应助chrainy采纳,获得10
18秒前
courage完成签到,获得积分10
18秒前
yocii发布了新的文献求助10
18秒前
18秒前
想长头发的灯灯应助Kannan采纳,获得10
18秒前
自信白凡完成签到,获得积分10
20秒前
21秒前
MRM发布了新的文献求助10
21秒前
Marshall完成签到 ,获得积分10
21秒前
洗剪吹完成签到,获得积分10
22秒前
22秒前
不安的盼波完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796465
求助须知:如何正确求助?哪些是违规求助? 3341712
关于积分的说明 10307381
捐赠科研通 3058317
什么是DOI,文献DOI怎么找? 1678107
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838