Bayesian Functional Optimization

核希尔伯特再生空间 贝叶斯优化 计算机科学 数学优化 最优化问题 感知器 希尔伯特空间 随机优化 人工智能 核(代数) 算法 机器学习 人工神经网络 数学 组合数学 数学分析
作者
Ngo Anh Vien,Heiko Zimmermann,Marc Toussaint
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:32 (1) 被引量:13
标识
DOI:10.1609/aaai.v32i1.11830
摘要

Bayesian optimization (BayesOpt) is a derivative-free approach for sequentially optimizing stochastic black-box functions. Standard BayesOpt, which has shown many successes in machine learning applications, assumes a finite dimensional domain which often is a parametric space. The parameter space is defined by the features used in the function approximations which are often selected manually. Therefore, the performance of BayesOpt inevitably depends on the quality of chosen features. This paper proposes a new Bayesian optimization framework that is able to optimize directly on the domain of function spaces. The resulting framework, Bayesian Functional Optimization (BFO), not only extends the application domains of BayesOpt to functional optimization problems but also relaxes the performance dependency on the chosen parameter space. We model the domain of functions as a reproducing kernel Hilbert space (RKHS), and use the notion of Gaussian processes on a real separable Hilbert space. As a result, we are able to define traditional improvement-based (PI and EI) and optimistic acquisition functions (UCB) as functionals. We propose to optimize the acquisition functionals using analytic functional gradients that are also proved to be functions in a RKHS. We evaluate BFO in three typical functional optimization tasks: i) a synthetic functional optimization problem, ii) optimizing activation functions for a multi-layer perceptron neural network, and iii) a reinforcement learning task whose policies are modeled in RKHS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南桥发布了新的文献求助10
1秒前
2秒前
柠檬很酸发布了新的文献求助10
3秒前
Kikisong完成签到,获得积分10
3秒前
TaoJ应助爱读文献的小刘采纳,获得10
3秒前
4秒前
5秒前
zh发布了新的文献求助10
8秒前
JamesPei应助南桥采纳,获得10
9秒前
12334发布了新的文献求助10
9秒前
li发布了新的文献求助10
12秒前
12秒前
迅速煎蛋完成签到,获得积分10
14秒前
15秒前
哈呼呼发布了新的文献求助10
16秒前
完美世界应助负责的方盒采纳,获得10
18秒前
朴素雁山发布了新的文献求助10
19秒前
害羞的夏旋应助糊糊采纳,获得10
24秒前
25秒前
汉堡包应助Chun采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
26秒前
Hello应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
谢小盟应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
嘿嘿应助科研通管家采纳,获得10
27秒前
27秒前
所所应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
27秒前
七塔蹦完成签到,获得积分10
29秒前
JiaMX发布了新的文献求助20
29秒前
Lv发布了新的文献求助10
30秒前
龙龙ff11_完成签到,获得积分10
32秒前
Chun完成签到,获得积分20
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4128362
求助须知:如何正确求助?哪些是违规求助? 3665624
关于积分的说明 11598008
捐赠科研通 3364710
什么是DOI,文献DOI怎么找? 1848881
邀请新用户注册赠送积分活动 912699
科研通“疑难数据库(出版商)”最低求助积分说明 828134