微泡
间充质干细胞
炎症体
炎症
氧化应激
癌症研究
外体
医学
细胞生物学
线粒体
生物
免疫学
小RNA
生物化学
内科学
基因
作者
Chen Xia,Zhong-You Zeng,Bin Fang,Min Tao,Chenhui Gu,Lin Zheng,Yiyun Wang,Yiling Shi,Fang Chen,Sheng Mei,Qi Chen,Juanjuan Zhao,Xianfeng Lin,Shunwu Fan,Yongming Jin,Pengfei Chen
标识
DOI:10.1016/j.freeradbiomed.2019.07.026
摘要
Excessive oxidative stress and inflammation are the key early events in the development of intervertebral disc degeneration (IVDD). The NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome has been identified as the major source of oxidative stress and the inflammatory responses and thus is an attractive therapeutic target for IVDD. However, currently, there are no reports on the use of mesenchymal stem cell (MSC)-derived exosomes to reduce NLRP3 inflammasome expression for IVDD treatment. The present study aimed to investigate the therapeutic effect of exosomes for use as IVDD therapeutics. We first manufactured and evaluated the characteristics of exosomes. Then, we investigated the effects of exosomes on H2O2-induced nucleus pulposus (NP) cell inflammation. Third, we tested the function of exosomes with respect to H2O2-induced ROS production and mitochondrial dysfunction. Finally, the therapeutic effect of exosomes on IVDD was investigated using a rabbit IVDD model. Results showed that exosomes play an anti-inflammatory role in pathological NP cells by suppressing inflammatory mediators and NLRP3 inflammasome activation. Moreover, it was suggested that exosomes might supply mitochondrial proteins to NP cells, and that the damaged mitochondria could be restored with this supplement. Further, in the rabbit IVDD model, exosomes significantly prevented the progression of degenerative changes. Our results confirmed that the NLRP3 inflammasome is an effective target for IVDD treatment and that the injection of exosomes could be a promising therapeutic strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI