A Parallel Framework for Multilayer Perceptron for Human Face Recognition

计算机科学 模式识别(心理学) 人工神经网络 面部识别系统 人工智能 多层感知器 面子(社会学概念) 任务(项目管理) 感知器 时滞神经网络 班级(哲学) 趋同(经济学) 机器学习 语音识别 工程类 经济增长 社会科学 社会学 经济 系统工程
作者
Mrinal Kanti Bhowmik,Debotosh Bhattacharjee,Mita Nasipuri,Dipak Kumar Basu,Mahantapas Kundu
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.1007.0627
摘要

Artificial neural networks have already shown their success in face recognition and similar complex pattern recognition tasks. However, a major disadvantage of the technique is that it is extremely slow during training for larger classes and hence not suitable for real-time complex problems such as pattern recognition. This is an attempt to develop a parallel framework for the training algorithm of a perceptron. In this paper, two general architectures for a Multilayer Perceptron (MLP) have been demonstrated. The first architecture is All-Class-in-One-Network (ACON) where all the classes are placed in a single network and the second one is One-Class-in-One-Network (OCON) where an individual single network is responsible for each and every class. Capabilities of these two architectures were compared and verified in solving human face recognition, which is a complex pattern recognition task where several factors affect the recognition performance like pose variations, facial expression changes, occlusions, and most importantly illumination changes. Both the structures were implemented and tested for face recognition purpose and experimental results show that the OCON structure performs better than the generally used ACON ones in term of training convergence speed of the network. Unlike the conventional sequential approach of training the neural networks, the OCON technique may be implemented by training all the classes of the face images simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助毛豆爱睡觉采纳,获得10
3秒前
纯真醉波发布了新的文献求助10
5秒前
5秒前
桐桐应助如常采纳,获得10
6秒前
无限映波完成签到,获得积分10
6秒前
aa完成签到,获得积分10
8秒前
绒绒发布了新的文献求助10
9秒前
10秒前
机器猫发布了新的文献求助30
10秒前
10秒前
11秒前
12秒前
12秒前
13秒前
13秒前
乐乐应助无情的匪采纳,获得10
14秒前
谨慎的荧荧完成签到,获得积分10
15秒前
愉快尔烟发布了新的文献求助10
16秒前
17秒前
占曼荷完成签到,获得积分10
17秒前
刻苦素发布了新的文献求助10
18秒前
19秒前
Hoooo...发布了新的文献求助10
20秒前
21秒前
无限映波关注了科研通微信公众号
21秒前
hpp发布了新的文献求助10
21秒前
科研助手完成签到,获得积分10
22秒前
Lucas应助机器猫采纳,获得30
22秒前
Owen应助绒绒采纳,获得10
25秒前
26秒前
28秒前
28秒前
LI完成签到 ,获得积分10
28秒前
赘婿应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
30秒前
无情的匪发布了新的文献求助10
31秒前
31秒前
32秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906146
求助须知:如何正确求助?哪些是违规求助? 3451742
关于积分的说明 10866200
捐赠科研通 3177147
什么是DOI,文献DOI怎么找? 1755205
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791226