Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?

深度学习 人工智能 计算机科学 机器学习 人工神经网络 领域(数学) 无线网络 学习迁移 无线 电信 数学 纯数学
作者
Alessio Zappone,Marco Di Renzo,Mérouane Debbah
出处
期刊:IEEE Transactions on Communications [IEEE Communications Society]
卷期号:67 (10): 7331-7376 被引量:471
标识
DOI:10.1109/tcomm.2019.2924010
摘要

This paper deals with the use of emerging deep learning techniques in future wireless communication networks. It will be shown that the data-driven approaches should not replace, but rather complement, traditional design techniques based on mathematical models. Extensive motivation is given for why deep learning based on artificial neural networks will be an indispensable tool for the design and operation of future wireless communication networks, and our vision of how artificial neural networks should be integrated into the architecture of future wireless communication networks is presented. A thorough description of deep learning methodologies is provided, starting with the general machine learning paradigm, followed by a more in-depth discussion about deep learning and artificial neural networks, covering the most widely used artificial neural network architectures and their training methods. Deep learning will also be connected to other major learning frameworks, such as reinforcement learning and transfer learning. A thorough survey of the literature on deep learning for wireless communication networks is provided, followed by a detailed description of several novel case studies wherein the use of deep learning proves extremely useful for network design. For each case study, it will be shown how the use of (even approximate) mathematical models can significantly reduce the amount of live data that needs to be acquired/measured to implement the data-driven approaches. Finally, concluding remarks describe those that, in our opinion, are the major directions for future research in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SunnyZjw发布了新的文献求助10
2秒前
3秒前
自觉紫安发布了新的文献求助10
3秒前
科研通AI5应助zyc采纳,获得10
3秒前
冷傲山彤完成签到,获得积分10
3秒前
dreamsci完成签到 ,获得积分10
10秒前
Owen应助酸萝卜采纳,获得10
10秒前
脑洞疼应助自觉紫安采纳,获得10
11秒前
12秒前
18秒前
大模型应助tcf采纳,获得10
18秒前
19秒前
20秒前
23秒前
25秒前
25秒前
25秒前
酸萝卜完成签到,获得积分10
25秒前
彭于晏应助雅雅采纳,获得10
27秒前
紫色奶萨发布了新的文献求助10
30秒前
威士忌www发布了新的文献求助10
30秒前
搜集达人应助SunnyZjw采纳,获得10
30秒前
31秒前
31秒前
酷波er应助陈可欣采纳,获得10
32秒前
37秒前
南宫映榕发布了新的文献求助10
37秒前
瘦瘦发布了新的文献求助10
37秒前
znlion发布了新的文献求助10
38秒前
小蘑菇应助轻松的贞采纳,获得10
39秒前
雨洋完成签到,获得积分10
39秒前
田様应助Mastertry采纳,获得10
41秒前
42秒前
小王完成签到,获得积分10
43秒前
44秒前
45秒前
蜗牛0356发布了新的文献求助20
47秒前
橘络完成签到 ,获得积分10
49秒前
49秒前
汉堡包应助1234采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669