Visible Light-Induced Excited-State Transition-Metal Catalysis

光催化 催化作用 光化学 过渡金属 激发态 光催化 化学 可见光谱 基质(水族馆) 材料科学 有机化学 原子物理学 光电子学 物理 海洋学 地质学
作者
Rajesh Kancherla,Krishnamoorthy Muralirajan,Arunachalam Sagadevan,Magnus Rueping
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (5): 510-523 被引量:191
标识
DOI:10.1016/j.trechm.2019.03.012
摘要

Unlike many traditional transition metal (TM)-catalyzed reactions that require heat, in excited-state TM catalysis visible-light irradiation at room temperature is used. Compared with conventional metal/photoredox cooperative/dual catalysis that uses two different catalysts, the use of a single TM acting as both photo- and cross-coupling catalyst is economic and attractive. The inner-sphere mechanism via a substrate–TM interaction allows reactivity and selectivity that is not possible with conventional photosensitizers. In contrast to conventional photocatalysis, TM photocatalysis is less dependent on the often fine-tuned redox potentials of the substrate and catalyst. In recent years, visible light-induced excited-state transition-metal (TM) (Mn, Co, Cu, and Pd) catalysis has attracted significant attention for the development of various chemical transformations. In contrast to metal/photoredox dual catalysis that uses conventional photosensitizers and TMs cooperatively, photoexcited-state TM catalysis uses a single TM complex as both the photocatalyst (PC) and the cross-coupling catalyst, resulting in more sustainable and efficient reactions. Unlike the outer-sphere mechanism active in conventional photocatalysis, these TM catalysts operate through a photoinduced inner-sphere mechanism in which the substrate–TM interaction is crucial for the bond-breaking or bond-forming steps, making this system an important advance in efficient carbon–carbon (C–C) bond formation reactions. Given the importance of these TM complexes as next-generation PCs with distinct mechanisms, in this review we highlight recent developments in photoexcited TM catalysis for C–C bond formation. In recent years, visible light-induced excited-state transition-metal (TM) (Mn, Co, Cu, and Pd) catalysis has attracted significant attention for the development of various chemical transformations. In contrast to metal/photoredox dual catalysis that uses conventional photosensitizers and TMs cooperatively, photoexcited-state TM catalysis uses a single TM complex as both the photocatalyst (PC) and the cross-coupling catalyst, resulting in more sustainable and efficient reactions. Unlike the outer-sphere mechanism active in conventional photocatalysis, these TM catalysts operate through a photoinduced inner-sphere mechanism in which the substrate–TM interaction is crucial for the bond-breaking or bond-forming steps, making this system an important advance in efficient carbon–carbon (C–C) bond formation reactions. Given the importance of these TM complexes as next-generation PCs with distinct mechanisms, in this review we highlight recent developments in photoexcited TM catalysis for C–C bond formation. an energy level of a system (atom, ion, or molecule) in which an electron is at a higher energy level (high-energy orbital) than its ground state. a resonance process that increases the stability of the system through the interaction of the electrons in an σ-orbital with an adjacent empty or partially filled p- or π-orbital to provide an extended molecular orbital. an electron-transfer process in which the electrons are transferred between two redox partners via the formation of a direct bond or a strong electronic interaction between redox partners. an electron-transfer process in which the electrons are transferred between two redox partners without the formation of a direct bond or without any electronic interaction between redox partners. a substance capable of initiating a chemical reaction by absorbing light energy and transferring the energy to the desired reactants. the transfer of an electron from one atom or molecule to another. In redox chemistry, the donor atom or molecule loses electrons (oxidation) while the acceptor gains the electron (reduction). the cross-coupling reactions of an organohalides with terminal alkynes to give C–C cross-coupled products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bailey发布了新的文献求助10
1秒前
2秒前
zeng完成签到,获得积分10
2秒前
2秒前
4秒前
5秒前
6秒前
8秒前
积极从蕾发布了新的文献求助10
10秒前
所所应助叶远望采纳,获得10
10秒前
11秒前
七里香应助文件撤销了驳回
11秒前
CG2021发布了新的文献求助10
12秒前
檀江完成签到 ,获得积分10
13秒前
共享精神应助Y哦莫哦莫采纳,获得10
15秒前
千俞完成签到 ,获得积分10
15秒前
16秒前
16秒前
TOO完成签到 ,获得积分10
19秒前
19秒前
甜美无剑发布了新的文献求助10
19秒前
20秒前
21秒前
小白应助Rjy采纳,获得20
22秒前
今后应助Zll采纳,获得10
24秒前
闲来逛逛007完成签到 ,获得积分10
25秒前
hachi发布了新的文献求助10
25秒前
aliaxs发布了新的文献求助10
26秒前
27秒前
28秒前
爱听歌采白完成签到,获得积分10
28秒前
吃饱喝足就睡觉完成签到 ,获得积分10
28秒前
30秒前
31秒前
852应助吕懿采纳,获得10
31秒前
31秒前
8788发布了新的文献求助10
32秒前
科研通AI5应助hachi采纳,获得10
33秒前
33秒前
坦率铅笔发布了新的文献求助10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784091
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240855
捐赠科研通 3044714
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800193
科研通“疑难数据库(出版商)”最低求助积分说明 759241