Taking Human out of Learning Applications: A Survey on Automated Machine Learning

人工智能 分类 机器学习 计算机科学 自动化 数据科学 工程类 机械工程
作者
Quanming Yao,Mengshuo Wang,Hugo Jair Escalante,Isabelle Guyon,Yi-Qi Hu,Yufeng Li,Wei-Wei Tu,Qiang Yang,Yu Yang
出处
期刊:Cornell University - arXiv 被引量:221
摘要

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yazhang发布了新的文献求助10
刚刚
Korai发布了新的文献求助10
2秒前
2秒前
有魅力的浩宇完成签到,获得积分10
2秒前
wanci应助Lil_baby采纳,获得10
2秒前
顾矜应助Rgly采纳,获得10
2秒前
3秒前
ZZZ发布了新的文献求助10
3秒前
3秒前
赘婿应助xiu采纳,获得10
3秒前
4秒前
4秒前
愉快的平安关注了科研通微信公众号
4秒前
量子星尘发布了新的文献求助10
4秒前
mwx发布了新的文献求助10
4秒前
CodeCraft应助张维采纳,获得10
5秒前
5秒前
真实的冬日完成签到,获得积分20
5秒前
6秒前
希望天下0贩的0应助leoo采纳,获得10
6秒前
科研通AI6应助朱婷采纳,获得10
6秒前
6秒前
fan完成签到 ,获得积分10
6秒前
linus发布了新的文献求助10
7秒前
探探完成签到,获得积分10
7秒前
鹿多多发布了新的文献求助10
7秒前
可爱的函函应助缥缈天思采纳,获得10
7秒前
8秒前
ycccc99发布了新的文献求助10
8秒前
传奇3应助醉熏的伊采纳,获得10
9秒前
9秒前
快乐的海亦完成签到,获得积分10
10秒前
11秒前
小呆呆完成签到,获得积分10
11秒前
科研通AI6应助blue采纳,获得40
11秒前
Simba完成签到,获得积分10
11秒前
吃人不眨眼应助JX采纳,获得20
12秒前
搜集达人应助执着的南松采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519788
求助须知:如何正确求助?哪些是违规求助? 4611783
关于积分的说明 14530363
捐赠科研通 4549191
什么是DOI,文献DOI怎么找? 2492885
邀请新用户注册赠送积分活动 1473959
关于科研通互助平台的介绍 1445766