Artificial Neural Networks in the Diagnosis and Prognosis of Prostate Cancer: A Pilot Study

医学 前列腺切除术 前列腺癌 直肠检查 前列腺癌筛查 前列腺特异性抗原 前列腺 活检 前列腺活检 癌症 泌尿科 妇科 内科学
作者
Peter B. Snow,Deborah S. Smith,William J. Catàlona
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:152 (5 Part 2): 1923-1926 被引量:235
标识
DOI:10.1016/s0022-5347(17)32416-3
摘要

No AccessJournal of Urology1 Nov 1994Artificial Neural Networks in the Diagnosis and Prognosis of Prostate Cancer: A Pilot Study Peter B. Snow, Deborah S. Smith, and William J. Catalona Peter B. SnowPeter B. Snow , Deborah S. SmithDeborah S. Smith , and William J. CatalonaWilliam J. Catalona View All Author Informationhttps://doi.org/10.1016/S0022-5347(17)32416-3AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail There is controversy about how prostate cancer screening tests should best be used because of the false-negative and false-positive results. There also is controversy about prostate cancer treatment because of errors in tumor staging, uncertainty about treatment efficacy and the variable natural history of the disease. We sought to determine in a pilot study whether artificial neural networks would be helpful to predict biopsy results in men with abnormal screening test(s) and to predict treatment outcome after radical prostatectomy. To predict biopsy results, we extracted data from a prostate specific antigen (PSA) based screening study data base in 1,787 men with a serum PSA concentration of more than 4.0 ng./ml. (approximately 40% of the men also had suspicious findings on digital rectal examination). To predict cancer recurrence after radical prostatectomy, we extracted data from a random sample of 240 patients selected from a data base of men who had undergone radical prostatectomy. The neural network predicted the biopsy result with 87% overall accuracy, and its output threshold could be adjusted to achieve the desired tradeoff between sensitivity and specificity. It also predicted tumor recurrence with 90% overall accuracy. We conclude that trained neural networks may be useful in decision making for prostate cancer patients. © 1994 by The American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetailsCited ByTaneja S (2020) Re: Artificial Intelligence for Diagnosis and Grading of Prostate Cancer in Biopsies: A Population-Based, Diagnostic StudyJournal of Urology, VOL. 204, NO. 3, (620-621), Online publication date: 1-Sep-2020.Thompson R, Blute M, Slezak J, Bergstralh E and Leibovich B (2007) Is the GPSM Scoring Algorithm for Patients With Prostate Cancer Valid in the Contemporary Era?Journal of Urology, VOL. 178, NO. 2, (459-463), Online publication date: 1-Aug-2007.GRAEFEN M, OHORI M, KARAKIEWICZ P, CAGIANNOS I, HAMMERER P, HAESE A, ERBERSDOBLER A, HENKE R, HULAND H, WHEELER T, SLAWIN K, SCARDINO P and KATTAN M (2018) Assessment of the Enhancement in Predictive Accuracy Provided by Systematic Biopsy in Predicting Outcome for Clinically Localized Prostate CancerJournal of Urology, VOL. 171, NO. 1, (200-203), Online publication date: 1-Jan-2004.ZLOTTA A, REMZI M, SNOW P, SCHULMAN C, MARBERGER M and DJAVAN B (2018) An Artificial Neural Network for Prostate Cancer Staging when Serum Prostate Specific Antigen is 10 NG./ML. or LessJournal of Urology, VOL. 169, NO. 5, (1724-1728), Online publication date: 1-May-2003.WADIE B, BADAWI A and GHONEIM M (2018) THE RELATIONSHIP OF THE INTERNATIONAL PROSTATE SYMPTOM SCORE AND OBJECTIVE PARAMETERS FOR DIAGNOSING BLADDER OUTLET OBSTRUCTION. PART II: THE POTENTIAL USEFULNESS OF ARTIFICIAL NEURAL NETWORKSJournal of Urology, VOL. 165, NO. 1, (35-37), Online publication date: 1-Jan-2001.BORQUE A, SANZ G, ALLEPUZ C, PLAZA L, GIL P and RIOJA L (2018) THE USE OF NEURAL NETWORKS AND LOGISTIC REGRESSION ANALYSIS FOR PREDICTING PATHOLOGICAL STAGE IN MEN UNDERGOING RADICAL PROSTATECTOMY: A POPULATION BASED STUDYJournal of Urology, VOL. 166, NO. 5, (1672-1678), Online publication date: 1-Nov-2001.ROSS P, SCARDINO P and KATTAN M (2018) A CATALOG OF PROSTATE CANCER NOMOGRAMSJournal of Urology, VOL. 165, NO. 5, (1562-1568), Online publication date: 1-May-2001.QURESHI K, NAGUIB R, HAMDY F, NEAL D and MELLON J (2018) NEURAL NETWORK ANALYSIS OF CLINICOPATHOLOGICAL AND MOLECULAR MARKERS IN BLADDER CANCERJournal of Urology, VOL. 163, NO. 2, (630-633), Online publication date: 1-Feb-2000.TEWARI A and NARAYAN P (2018) NOVEL STAGING TOOL FOR LOCALIZED PROSTATE CANCER: A PILOT STUDY USING GENETIC ADAPTIVE NEURAL NETWORKSJournal of Urology, VOL. 160, NO. 2, (430-436), Online publication date: 1-Aug-1998.Krongrad A, Granville L, Burke M, Golden R, Lai S, Cho L and Niederberger C (2018) Predictors of General Quality of Life in Patients With Benign Prostate Hyperplasia or Prostate CancerJournal of Urology, VOL. 157, NO. 2, (534-538), Online publication date: 1-Feb-1997.Niederberger C (2018) Commentary on the Use of Neural Networks in Clinical UrologyJournal of Urology, VOL. 153, NO. 5, (1362-1362), Online publication date: 1-May-1995.Lange P (2018) Future studies in localized prostate cancer. What should we think? What can we do?Journal of Urology, VOL. 152, NO. 5 Part 2, (1932-1938), Online publication date: 1-Nov-1994. Volume 152Issue 5 Part 2November 1994Page: 1923-1926 Advertisement Copyright & Permissions© 1994 by The American Urological Association Education and Research, Inc.Keywordsneoplasmcomputerantigensneural networksoutcome assessment (health care)prostatic neoplasmsMetricsAuthor Information Peter B. Snow More articles by this author Deborah S. Smith More articles by this author William J. Catalona More articles by this author Expand All Advertisement Loading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
pppsci完成签到,获得积分10
3秒前
4秒前
JDZYLD发布了新的文献求助10
4秒前
4秒前
十六发布了新的文献求助10
5秒前
6秒前
嗯哼发布了新的文献求助20
6秒前
7秒前
南宫若翠发布了新的文献求助10
12秒前
热心玉兰发布了新的文献求助10
12秒前
15秒前
yyy完成签到 ,获得积分10
16秒前
16秒前
pluto发布了新的文献求助10
17秒前
纯真大门发布了新的文献求助10
20秒前
20秒前
苹果白凡完成签到,获得积分10
21秒前
Gha发布了新的文献求助10
21秒前
22秒前
热心玉兰完成签到,获得积分10
22秒前
怕黑世德关注了科研通微信公众号
23秒前
23秒前
123发布了新的文献求助10
23秒前
绿地土狗完成签到,获得积分10
24秒前
纯真大门完成签到,获得积分20
26秒前
我是老大应助苏星星采纳,获得10
27秒前
27秒前
Bystander完成签到 ,获得积分10
28秒前
单薄靖儿发布了新的文献求助10
28秒前
柔弱藏今发布了新的文献求助10
28秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901491
求助须知:如何正确求助?哪些是违规求助? 3446223
关于积分的说明 10843799
捐赠科研通 3171322
什么是DOI,文献DOI怎么找? 1752254
邀请新用户注册赠送积分活动 847073
科研通“疑难数据库(出版商)”最低求助积分说明 789698