Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

医学 糖尿病性视网膜病变 眼底(子宫) 卷积神经网络 视网膜 算法 眼科 黄斑水肿 人工智能 数据集 深度学习 验光服务 糖尿病 计算机科学 内分泌学
作者
Varun Gulshan,Lily Peng,Marc Coram,Martin C. Stumpe,Derek Wu,Arunachalam Narayanaswamy,Subhashini Venugopalan,Kasumi Widner,T. Madams,Jorge Cuadros,Kim Ramasamy,Rajiv Raman,Philip Nelson,Jessica L. Mega,Dale R. Webster
出处
期刊:JAMA [American Medical Association]
卷期号:316 (22): 2402-2402 被引量:6255
标识
DOI:10.1001/jama.2016.17216
摘要

Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation.To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs.A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency.Deep learning-trained algorithm.The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity.The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4 years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women; prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and 0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%.In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六月六发布了新的文献求助10
刚刚
Akim应助小张采纳,获得10
1秒前
平安如意完成签到,获得积分20
4秒前
4秒前
DDDDD发布了新的文献求助10
4秒前
科研通AI5应助无奈的雍采纳,获得10
5秒前
5秒前
波里舞完成签到 ,获得积分10
6秒前
8秒前
六月六完成签到,获得积分10
8秒前
感性的俊驰完成签到 ,获得积分10
9秒前
诗谙完成签到 ,获得积分10
9秒前
张聪明完成签到,获得积分10
10秒前
bobo发布了新的文献求助10
10秒前
11秒前
11秒前
lizhiqian2024发布了新的文献求助30
11秒前
12秒前
13秒前
平淡思雁完成签到,获得积分10
13秒前
13秒前
Akim应助光亮笑柳采纳,获得10
14秒前
潘潘发布了新的文献求助10
14秒前
馒头完成签到,获得积分10
15秒前
qqqq发布了新的文献求助10
15秒前
eyou发布了新的文献求助10
16秒前
17秒前
波尔发布了新的文献求助10
17秒前
葫芦娃完成签到,获得积分10
18秒前
yang完成签到 ,获得积分10
19秒前
郑冰冰完成签到,获得积分20
20秒前
20秒前
硫化铅应助潘潘采纳,获得10
21秒前
小张发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
rain123发布了新的文献求助10
25秒前
zho发布了新的文献求助10
26秒前
Joshua发布了新的文献求助30
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784451
求助须知:如何正确求助?哪些是违规求助? 3329582
关于积分的说明 10242685
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671561
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391