Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

医学 糖尿病性视网膜病变 眼底(子宫) 卷积神经网络 视网膜 算法 眼科 黄斑水肿 人工智能 数据集 深度学习 验光服务 糖尿病 计算机科学 内分泌学
作者
Varun Gulshan,Lily Peng,Marc Coram,Martin C. Stumpe,Derek Wu,Arunachalam Narayanaswamy,Subhashini Venugopalan,Kasumi Widner,T. Madams,Jorge Cuadros,Kim Ramasamy,Rajiv Raman,Philip Nelson,Jessica L. Mega,Dale R. Webster
出处
期刊:JAMA [American Medical Association]
卷期号:316 (22): 2402-2402 被引量:6505
标识
DOI:10.1001/jama.2016.17216
摘要

Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation.To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs.A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency.Deep learning-trained algorithm.The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity.The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4 years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women; prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and 0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%.In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺利毕业完成签到,获得积分10
刚刚
1秒前
1秒前
独特的蛋挞完成签到,获得积分10
2秒前
舟舟莉发布了新的文献求助10
3秒前
Dull发布了新的文献求助10
3秒前
3秒前
烂漫的筮完成签到,获得积分20
3秒前
受伤飞鸟发布了新的文献求助10
5秒前
科研通AI5应助Watsun采纳,获得80
6秒前
lllxxx发布了新的文献求助10
7秒前
7秒前
清秀浩宇完成签到,获得积分10
8秒前
Dean应助blush采纳,获得50
8秒前
Tobiuo发布了新的文献求助10
8秒前
10秒前
我是老大应助benhzh采纳,获得10
10秒前
完美世界应助受伤飞鸟采纳,获得10
11秒前
wanci应助科研小糊涂采纳,获得10
11秒前
田様应助112我的采纳,获得10
12秒前
yeapyeye发布了新的文献求助10
13秒前
13秒前
等一只ya完成签到,获得积分10
13秒前
13秒前
蒋蒋蒋发布了新的文献求助30
14秒前
feizhuliu发布了新的文献求助20
15秒前
领导范儿应助糊涂的万采纳,获得10
16秒前
ray发布了新的文献求助30
17秒前
Jadon完成签到,获得积分10
18秒前
Wl0115完成签到,获得积分10
18秒前
烂漫的筮发布了新的文献求助10
18秒前
斯文败类应助老实向雁采纳,获得10
19秒前
受伤飞鸟完成签到,获得积分10
21秒前
李爱国应助玉玉采纳,获得10
21秒前
22秒前
敏感盼夏完成签到 ,获得积分10
23秒前
23秒前
24秒前
天天快乐应助糊涂的万采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4511065
求助须知:如何正确求助?哪些是违规求助? 3956932
关于积分的说明 12267110
捐赠科研通 3617909
什么是DOI,文献DOI怎么找? 1990861
邀请新用户注册赠送积分活动 1027117
科研通“疑难数据库(出版商)”最低求助积分说明 918447