亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images

计算机科学 人工智能 网络体系结构 融合 过程(计算) 代表(政治) 图像融合 深度学习 传感器融合 保险丝(电气) 机器学习 模式识别(心理学) 图像(数学) 工程类 哲学 语言学 计算机安全 电气工程 政治 政治学 法学 操作系统
作者
Hui Li,Tianyang Xu,Xiao‐Jun Wu,Jiwen Lu,Josef Kittler
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 11040-11052 被引量:112
标识
DOI:10.1109/tpami.2023.3268209
摘要

Deep learning based fusion methods have been achieving promising performance in image fusion tasks. This is attributed to the network architecture that plays a very important role in the fusion process. However, in general, it is hard to specify a good fusion architecture, and consequently, the design of fusion networks is still a black art, rather than science. To address this problem, we formulate the fusion task mathematically, and establish a connection between its optimal solution and the network architecture that can implement it. This approach leads to a novel method proposed in the paper of constructing a lightweight fusion network. It avoids the time-consuming empirical network design by a trial-and-test strategy. In particular we adopt a learnable representation approach to the fusion task, in which the construction of the fusion network architecture is guided by the optimisation algorithm producing the learnable model. The low-rank representation (LRR) objective is the foundation of our learnable model. The matrix multiplications, which are at the heart of the solution are transformed into convolutional operations, and the iterative process of optimisation is replaced by a special feed-forward network. Based on this novel network architecture, an end-to-end lightweight fusion network is constructed to fuse infrared and visible light images. Its successful training is facilitated by a detail-to-semantic information loss function proposed to preserve the image details and to enhance the salient features of the source images. Our experiments show that the proposed fusion network exhibits better fusion performance than the state-of-the-art fusion methods on public datasets. Interestingly, our network requires a fewer training parameters than other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
32秒前
38秒前
42秒前
高大的战斗机完成签到,获得积分10
48秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
科研通AI5应助Linden_bd采纳,获得30
59秒前
1分钟前
大水完成签到 ,获得积分10
1分钟前
满意的小鸽子完成签到,获得积分10
1分钟前
1分钟前
太阳cy完成签到 ,获得积分10
1分钟前
科研通AI2S应助南风采纳,获得10
2分钟前
Ricardo完成签到 ,获得积分10
2分钟前
深情安青应助山青水秀采纳,获得10
2分钟前
住在魔仙堡的鱼完成签到 ,获得积分10
2分钟前
呜呜呜完成签到,获得积分20
2分钟前
橡树完成签到,获得积分10
2分钟前
3分钟前
宋江他大表哥完成签到,获得积分10
3分钟前
葫芦娃完成签到,获得积分20
3分钟前
樱桃猴子完成签到,获得积分0
3分钟前
3分钟前
3分钟前
Mxii发布了新的文献求助10
3分钟前
DiJia完成签到 ,获得积分10
3分钟前
急诊守夜人完成签到 ,获得积分10
3分钟前
微笑的鼠标完成签到,获得积分10
3分钟前
Mxii完成签到,获得积分10
3分钟前
4分钟前
月满西楼发布了新的文献求助30
4分钟前
坦率的枕头完成签到,获得积分10
4分钟前
月满西楼完成签到,获得积分10
4分钟前
科研通AI5应助小溪采纳,获得10
4分钟前
我爱Chem完成签到 ,获得积分10
4分钟前
开心寄松完成签到,获得积分10
4分钟前
Alex完成签到 ,获得积分10
4分钟前
4分钟前
山青水秀发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795552
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300530
捐赠科研通 3057097
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762507