The neurophysiological basis of leadership: a machine learning approach

脑电图 心理学 神经生理学 变革型领导 认知心理学 大脑活动与冥想 唤醒 任务(项目管理) 具身认知 社会心理学 人工智能 计算机科学 神经科学 管理 经济
作者
Elena Parra,Jestine Philip,Lucía A. Carrasco‐Ribelles,Irene Alice Chicchi Giglioli,Gaetano Valenza,Javier Marín‐Morales,Mariano Alcañíz
出处
期刊:Management Decision [Emerald Publishing Limited]
卷期号:61 (6): 1465-1484 被引量:6
标识
DOI:10.1108/md-02-2022-0208
摘要

Purpose This research employed two neurophysiological techniques (electroencephalograms (EEG) and galvanic skin response (GSR)) and machine learning algorithms to capture and analyze relationship-oriented leadership (ROL) and task-oriented leadership (TOL). By grounding the study in the theoretical perspectives of transformational leadership and embodied leadership, the study draws connections to the human body's role in activating ROL and TOL styles. Design/methodology/approach EEG and GSR signals were recorded during resting state and event-related brain activity for 52 study participants. Both leadership styles were assessed independently using a standard questionnaire, and brain activity was captured by presenting subjects with emotional stimuli. Findings ROL revealed differences in EEG baseline over the frontal lobes during emotional stimuli, but no differences were found in GSR signals. TOL style, on the other hand, did not present significant differences in either EEG or GSR responses, as no biomarkers showed differences. Hence, it was concluded that EEG measures were better at recognizing brain activity associated with ROL than TOL. EEG signals were also strongest when individuals were presented with stimuli containing positive (specifically, happy) emotional content. A subsequent machine learning model developed using EEG and GSR data to recognize high/low levels of ROL and TOL predicted ROL with 81% accuracy. Originality/value The current research integrates psychophysiological techniques like EEG with machine learning to capture and analyze study variables. In doing so, the study addresses biases associated with self-reported surveys that are conventionally used in management research. This rigorous and interdisciplinary research advances leadership literature by striking a balance between neurological data and the theoretical underpinnings of transformational and embodied leadership.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaojie2024完成签到,获得积分10
1秒前
尔安完成签到,获得积分10
1秒前
1秒前
1秒前
单纯的奇异果完成签到,获得积分10
1秒前
义气萝卜头完成签到 ,获得积分10
1秒前
2秒前
科研通AI2S应助王红玉采纳,获得10
2秒前
桐桐应助QQ不需要昵称采纳,获得10
2秒前
ao黛雷赫完成签到,获得积分10
3秒前
D-D完成签到,获得积分10
3秒前
yunna_ning完成签到,获得积分0
4秒前
4秒前
SK完成签到,获得积分20
4秒前
shiizii应助WANG采纳,获得10
4秒前
舒心的耷完成签到,获得积分10
5秒前
研友_LpAljn完成签到,获得积分10
5秒前
5秒前
温梦花雨完成签到 ,获得积分10
5秒前
myy发布了新的文献求助10
6秒前
默存完成签到,获得积分10
6秒前
hcsdgf完成签到 ,获得积分10
6秒前
中科路2020完成签到,获得积分10
7秒前
7秒前
hym完成签到,获得积分10
7秒前
雷小牛完成签到 ,获得积分10
7秒前
掉头发的小白完成签到,获得积分10
7秒前
JudgeGoodwin完成签到,获得积分10
7秒前
娜写年华完成签到,获得积分10
7秒前
JING发布了新的文献求助10
8秒前
谨言完成签到 ,获得积分10
8秒前
kk发布了新的文献求助10
9秒前
zdx1022完成签到,获得积分10
9秒前
xinchengzhu完成签到 ,获得积分10
10秒前
研友_LpAljn发布了新的文献求助30
10秒前
xiaohan,JIA完成签到,获得积分10
11秒前
松花蛋完成签到,获得积分10
11秒前
陈JY完成签到 ,获得积分10
12秒前
Shit完成签到,获得积分10
12秒前
Frost完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4022194
求助须知:如何正确求助?哪些是违规求助? 3562352
关于积分的说明 11337634
捐赠科研通 3294213
什么是DOI,文献DOI怎么找? 1814468
邀请新用户注册赠送积分活动 889245
科研通“疑难数据库(出版商)”最低求助积分说明 812858