Development of Nanoscale Graphene Oxide Models for the Adsorption of Biological Molecules

石墨烯 力场(虚构) 分子 氧化物 密度泛函理论 分子动力学 材料科学 计算化学 缩放比例 平均力势 化学物理 吸附 从头算 纳米材料 纳米尺度 离子键合 纳米技术 工作(物理) 相互作用能 化学 热力学 物理 离子 物理化学 有机化学 数学 量子力学 冶金 几何学
作者
Alexandre V. Pinto,Pedro Ferreira,Pedro A. Fernandes,Alexandre L. Magalhães,María J. Ramos
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:127 (2): 557-566
标识
DOI:10.1021/acs.jpcb.2c06037
摘要

Graphene oxide (GO), a nanomaterial with promising applications that range from water purification to enzyme immobilization, is actively present in scientific research since its discovery. GO studies with computational methodologies such as molecular dynamics are frequently reported in the literature; however, the models used often rely on approximations, such as randomly placing functional groups and the use of generalized force fields. Therefore, it is important to develop new MD models that provide a more accurate description of GO structures and their interaction with an aqueous solvent and other adsorbate molecules. In this paper, we derived new force field non-bonded parameters from linear-scaling density functional theory calculations of nanoscale GO sheets with more than 10,000 atoms through an atoms-in-molecules (AIM) partitioning scheme. The resulting GAFF2-AIM force field, derived from the bonded terms of GAFF2 parameterization, reproduces the solvent structure reported in ab initio MD simulations better than the force field nowadays widely used in the literature. Additionally, we analyzed the effect of the ionic strength of the medium and of the C/O ratio on the distribution of charges surrounding the GO sheets. Finally, we simulated the adsorption of natural amino acid molecules to a GO sheet and estimated their free energy of binding, which compared very favorably to their respective experimental values, validating the force field presented in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱冰蓝完成签到 ,获得积分10
2秒前
5秒前
Owen应助和谐灵安采纳,获得10
6秒前
迅速的捕发布了新的文献求助10
6秒前
烟花应助正版DY采纳,获得10
8秒前
李健的小迷弟应助zyz924采纳,获得10
10秒前
寻道图强应助pugongying采纳,获得60
10秒前
17秒前
18秒前
小陈老板发布了新的文献求助10
18秒前
酷波er应助几携采纳,获得30
20秒前
21秒前
21秒前
23秒前
辜月十二完成签到 ,获得积分10
23秒前
zyz924发布了新的文献求助10
23秒前
why发布了新的文献求助10
24秒前
研友_VZG7GZ应助虚心的芷蝶采纳,获得10
24秒前
香蕉觅云应助taipingyang采纳,获得10
25秒前
和谐灵安发布了新的文献求助10
25秒前
26秒前
0xPrejudice完成签到,获得积分10
26秒前
27秒前
ztheily完成签到 ,获得积分10
28秒前
30秒前
Y的三次方发布了新的文献求助10
31秒前
31秒前
32秒前
天天快乐应助junjun采纳,获得10
32秒前
34秒前
35秒前
几携发布了新的文献求助30
35秒前
zt发布了新的文献求助10
37秒前
why发布了新的文献求助10
37秒前
38秒前
HGQ发布了新的文献求助10
41秒前
ding应助why采纳,获得10
42秒前
42秒前
43秒前
SciGPT应助zt采纳,获得10
44秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
The three stars each : the Astrolabes and related texts 550
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2399445
求助须知:如何正确求助?哪些是违规求助? 2100239
关于积分的说明 5294904
捐赠科研通 1828062
什么是DOI,文献DOI怎么找? 911133
版权声明 560133
科研通“疑难数据库(出版商)”最低求助积分说明 487051