Recent Advances of the Confinement Effects Boosting Electrochemical CO2 Reduction

催化作用 纳米技术 化学物理 电化学 化学 材料科学 物理化学 电极 生物化学
作者
Guomeng Liu,Jiauyu Zhan,Zisheng Zhang,Lu‐Hua Zhang,Fengshou Yu
出处
期刊:Chemistry-an Asian Journal [Wiley]
卷期号:18 (2) 被引量:5
标识
DOI:10.1002/asia.202200983
摘要

Powered by clean and renewable energy, electrocatalytic CO2 reduction reaction (CO2 RR) to chemical feedstocks is an effective way to mitigate the greenhouse effect and artificially close the carbon cycle. However, the performance of electrocatalytic CO2 RR was impeded by the strong thermodynamic stability of CO2 molecules and the high susceptibility to hydrogen evolution reaction (HER) in aqueous phase systems. Moreover, the numerous reaction intermediates formed at very near potentials lead to poor selectivity of reaction products, further preventing the industrialization of CO2 RR. Catalysis in confined space can enrich the reaction intermediates to improve their coverage at the active site, increase local pH to inhibit HER, and accelerate the mass transfer rate of reactants/products and subsequently facilitate CO2 RR performance. Therefore, we summarize the research progress on the application of the confinement effects in the direction of CO2 RR in theoretical and experimental directions. We first analyzed the mechanism of the confinement effect. Subsequently, the confinement effect was discussed in various forms, which can be characterized as an abnormal catalytic phenomenon due to the relative limitation of the reaction region. In specific, based on the physical structure of the catalyst, the confinement effect was divided in four categories: pore structure confinement, cavity structure confinement, active center confinement, and other confinement methods. Based on these discussions, we also have summarized the prospects and challenges in this field. This review aims to stimulate greater interests for the development of more efficient confined strategy for CO2 RR in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
sdh11133完成签到,获得积分10
1秒前
1秒前
1秒前
zoe完成签到,获得积分10
2秒前
2秒前
3秒前
KAG完成签到,获得积分20
3秒前
坦率尔琴发布了新的文献求助10
3秒前
李雨露关注了科研通微信公众号
3秒前
3秒前
3秒前
彬彬爷888发布了新的文献求助10
4秒前
赘婿应助zz采纳,获得10
4秒前
江江完成签到,获得积分20
4秒前
5秒前
ZW完成签到 ,获得积分10
5秒前
5秒前
5秒前
卫海亦发布了新的文献求助20
5秒前
5秒前
KAG发布了新的文献求助10
6秒前
6秒前
ll完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助JIANG采纳,获得10
8秒前
Cc发布了新的文献求助10
8秒前
8秒前
文静的人雄完成签到,获得积分10
8秒前
8秒前
七月流火应助豆花采纳,获得50
8秒前
Beloster完成签到,获得积分10
8秒前
9秒前
吴裙裙发布了新的文献求助10
9秒前
10秒前
愤怒的映萱完成签到,获得积分10
10秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Apiaceae Himalayenses. 2 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239217
求助须知:如何正确求助?哪些是违规求助? 3773003
关于积分的说明 11848979
捐赠科研通 3428784
什么是DOI,文献DOI怎么找? 1881776
邀请新用户注册赠送积分活动 933936
科研通“疑难数据库(出版商)”最低求助积分说明 840616