Enhancing Representation Learning With Spatial Transformation and Early Convolution for Reinforcement Learning-Based Small Object Detection

计算机科学 目标检测 强化学习 人工智能 模式识别(心理学) 转化(遗传学) 特征学习 对象(语法) 代表(政治) 卷积(计算机科学) 计算机视觉 人工神经网络 基因 化学 法学 政治 生物化学 政治学
作者
Fen Fang,Wenyu Liang,Yi Cheng,Qianli Xu,Joo‐Hwee Lim
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 315-328 被引量:19
标识
DOI:10.1109/tcsvt.2023.3284453
摘要

Although object detection has achieved significant progress in the past decade, detecting small objects is still far from satisfactory due to the high variability of object scales and complex backgrounds. The common way to enhance small object detection is to use high-resolution (HR) images. However, this method incurs huge computational resources which grow squarely with the resolution of images. To achieve both accuracy and efficiency, we propose a novel reinforcement learning framework that employs an efficient policy network consisting of a Spatial Transformation Network to enhance the state representation learning and a Transformer model with early convolution to improve feature extraction. Our method has two main steps: (1) coarse location query (CLQ), where an RL agent is trained to predict the locations of small objects on low-resolution (LR) (down-sampled version of HR) images; (2) context-sensitive object detection where HR image patches are used to detect objects on the selected coarse locations and LR image patches on background areas (containing no small objects). In this way, we can obtain high detection performance on small objects while avoiding unnecessary computation on background areas. The proposed method has been tested and benchmarked on various datasets. On the Caltech Pedestrians Detection and Web Pedestrians datasets, the proposed method improves the detection accuracy by 2%, while reducing the number of processed pixels. On the Vision meets Drone object detection dataset and the Oil and Gas Storage Tank dataset, the proposed method outperforms the state-of-the-art (SotA) methods. On MS COCO mini-val set, our method outperforms SotA methods on small object detection, while also achieving comparable performance on medium and large objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
captainHc完成签到,获得积分10
1秒前
范棒棒发布了新的文献求助10
2秒前
前景完成签到 ,获得积分10
2秒前
Edward完成签到,获得积分10
3秒前
我是老大应助科研式采纳,获得10
3秒前
3秒前
4秒前
jn应助茂飞采纳,获得10
4秒前
liyang发布了新的文献求助10
5秒前
森诺发布了新的文献求助10
6秒前
桐桐应助默默善愁采纳,获得10
6秒前
ll完成签到,获得积分10
7秒前
oboul发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
9秒前
9秒前
脑洞疼应助吉普赛大青蛙采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
kyo驳回了丘比特应助
14秒前
科研式发布了新的文献求助10
17秒前
17秒前
RA发布了新的文献求助80
17秒前
123发布了新的文献求助10
19秒前
SciGPT应助oboul采纳,获得10
19秒前
科研通AI6应助是我采纳,获得10
20秒前
21秒前
21秒前
JamesPei应助山谷采纳,获得10
21秒前
周健完成签到,获得积分10
22秒前
22秒前
葡萄成熟时完成签到 ,获得积分10
23秒前
细小发布了新的文献求助10
23秒前
25秒前
Ava应助周涨杰采纳,获得10
25秒前
cL完成签到 ,获得积分10
25秒前
syalonyui发布了新的文献求助10
26秒前
小蘑菇应助深藏blue采纳,获得10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457595
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292551
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343