亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding G-Quadruplex Biology and Stability Using Single-Molecule Techniques

磁镊 费斯特共振能量转移 解旋酶 G-四倍体 力谱学 纳米技术 生物物理学 计算生物学 化学 DNA 生物 原子力显微镜 荧光 物理 材料科学 生物化学 基因 核糖核酸 量子力学
作者
Nicholas Kusi-Appauh,Stephen F. Ralph,Antoine M. van Oijen,Lisanne M. Spenkelink
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:127 (25): 5521-5540 被引量:7
标识
DOI:10.1021/acs.jpcb.3c01708
摘要

The link between the chemical stability of G-quadruplex (qDNA) structures and their roles in eukaryotic genomic maintenance processes has been an area of interest now for several decades. This Review seeks to demonstrate how single-molecule force-based techniques can provide insight into the mechanical stabilities of a variety of qDNA structures as well as their ability to interconvert between different conformations under conditions of stress. Atomic force microscopy (AFM) and magnetic and optical tweezers have been the primary tools used in these investigations and have been used to examine both free and ligand-stabilized G-quadruplex structures. These studies have shown that the degree of stabilization of G-quadruplex structures has a significant effect on the ability of nuclear machinery to bypass these roadblocks on DNA strands. This Review will illustrate how various cellular components including replication protein A (RPA), Bloom syndrome protein (BLM), and Pif1 helicases are capable of unfolding qDNA. Techniques such as single-molecule fluorescence resonance energy transfer (smFRET), often in conjunction with the aforementioned force-based techniques, have proven extremely effective at elucidating the factors underpinning the mechanisms by which these proteins unwind qDNA structures. We will provide insight into how single-molecule tools have facilitated the direct visualization of qDNA roadblocks and also showcase results obtained from experiments designed to examine the ability of G-quadruplexes to limit the access of specific cellular proteins normally associated with telomeres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
章鱼完成签到,获得积分10
6秒前
Gloria发布了新的文献求助10
6秒前
czz014完成签到,获得积分10
14秒前
老芋头完成签到,获得积分10
17秒前
Gaopkid发布了新的文献求助10
17秒前
19秒前
两袖清风完成签到 ,获得积分10
23秒前
潇湘发布了新的文献求助10
25秒前
27秒前
RE完成签到 ,获得积分10
27秒前
龍咳发布了新的文献求助10
32秒前
李健应助Gloria采纳,获得10
33秒前
34秒前
pipi发布了新的文献求助10
42秒前
51秒前
51秒前
52秒前
52秒前
52秒前
52秒前
53秒前
53秒前
53秒前
53秒前
54秒前
54秒前
54秒前
54秒前
54秒前
55秒前
55秒前
56秒前
外向春天完成签到 ,获得积分10
58秒前
58秒前
58秒前
58秒前
59秒前
59秒前
59秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4136028
求助须知:如何正确求助?哪些是违规求助? 3672730
关于积分的说明 11611346
捐赠科研通 3368235
什么是DOI,文献DOI怎么找? 1850334
邀请新用户注册赠送积分活动 913772
科研通“疑难数据库(出版商)”最低求助积分说明 828910