Understanding G-Quadruplex Biology and Stability Using Single-Molecule Techniques

磁镊 费斯特共振能量转移 解旋酶 G-四倍体 力谱学 纳米技术 生物物理学 计算生物学 化学 DNA 生物 原子力显微镜 荧光 物理 材料科学 生物化学 基因 核糖核酸 量子力学
作者
Nicholas Kusi-Appauh,Stephen F. Ralph,Antoine M. van Oijen,Lisanne M. Spenkelink
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:127 (25): 5521-5540 被引量:7
标识
DOI:10.1021/acs.jpcb.3c01708
摘要

The link between the chemical stability of G-quadruplex (qDNA) structures and their roles in eukaryotic genomic maintenance processes has been an area of interest now for several decades. This Review seeks to demonstrate how single-molecule force-based techniques can provide insight into the mechanical stabilities of a variety of qDNA structures as well as their ability to interconvert between different conformations under conditions of stress. Atomic force microscopy (AFM) and magnetic and optical tweezers have been the primary tools used in these investigations and have been used to examine both free and ligand-stabilized G-quadruplex structures. These studies have shown that the degree of stabilization of G-quadruplex structures has a significant effect on the ability of nuclear machinery to bypass these roadblocks on DNA strands. This Review will illustrate how various cellular components including replication protein A (RPA), Bloom syndrome protein (BLM), and Pif1 helicases are capable of unfolding qDNA. Techniques such as single-molecule fluorescence resonance energy transfer (smFRET), often in conjunction with the aforementioned force-based techniques, have proven extremely effective at elucidating the factors underpinning the mechanisms by which these proteins unwind qDNA structures. We will provide insight into how single-molecule tools have facilitated the direct visualization of qDNA roadblocks and also showcase results obtained from experiments designed to examine the ability of G-quadruplexes to limit the access of specific cellular proteins normally associated with telomeres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助yll采纳,获得10
刚刚
刚刚
南夏完成签到,获得积分10
1秒前
不忘初鑫完成签到 ,获得积分10
1秒前
我是老大应助OuHou采纳,获得10
2秒前
2秒前
YCI完成签到 ,获得积分10
2秒前
3秒前
时鹏飞发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
风中血茗关注了科研通微信公众号
4秒前
5秒前
科研通AI5应助功不唐捐采纳,获得10
6秒前
飘落发布了新的文献求助10
6秒前
兔子应助南夏采纳,获得20
7秒前
百川发布了新的文献求助10
7秒前
hong123关注了科研通微信公众号
8秒前
yiyi发布了新的文献求助10
8秒前
梦137885完成签到,获得积分10
9秒前
9秒前
down发布了新的文献求助10
9秒前
13秒前
飘落完成签到,获得积分10
13秒前
房天川发布了新的文献求助10
13秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
QIN123456发布了新的文献求助10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
Connie应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751805
求助须知:如何正确求助?哪些是违规求助? 4097093
关于积分的说明 12676505
捐赠科研通 3809744
什么是DOI,文献DOI怎么找? 2103432
邀请新用户注册赠送积分活动 1128592
关于科研通互助平台的介绍 1005521