Machine Learning With Data Assimilation and Uncertainty Quantification for Dynamical Systems: A Review

数据同化 计算机科学 不确定度量化 可解释性 动力系统理论 不确定性传播 领域(数学) 数据科学 鉴定(生物学) 航程(航空) 机器学习 人工智能 工业工程 系统工程 管理科学 算法 航空航天工程 数学 工程类 植物 量子力学 气象学 纯数学 生物 物理
作者
Sibo Cheng,César Quilodrán-Casas,Said Ouala,Alban Farchi,Che Liu,Pierre Tandeo,Ronan Fablet,Didier Lucor,Bertrand Iooss,Julien Brajard,Dunhui Xiao,Tijana Janjić,Weiping Ding,Yike Guo,Alberto Carrassi,Marc Bocquet,Rossella Arcucci
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (6): 1361-1387 被引量:160
标识
DOI:10.1109/jas.2023.123537
摘要

Data assimilation (DA) and uncertainty quantification (UQ) are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical applications span from computational fluid dynamics (CFD) to geoscience and climate systems. Recently, much effort has been given in combining DA, UQ and machine learning (ML) techniques. These research efforts seek to address some critical challenges in high-dimensional dynamical systems, including but not limited to dynamical system identification, reduced order surro-gate modelling, error covariance specification and model error correction. A large number of developed techniques and methodologies exhibit a broad applicability across numerous domains, resulting in the necessity for a comprehensive guide. This paper provides the first overview of state-of-the-art researches in this interdisciplinary field, covering a wide range of applications. This review is aimed at ML scientists who attempt to apply DA and UQ techniques to improve the accuracy and the interpretability of their models, but also at DA and UQ experts who intend to integrate cutting-edge ML approaches to their systems. Therefore, this article has a special focus on how ML methods can overcome the existing limits of DA and UQ, and vice versa. Some exciting perspectives of this rapidly developing research field are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助tanshy采纳,获得10
刚刚
刚刚
刚刚
哇哈哈哈发布了新的文献求助10
1秒前
1秒前
灵巧谷芹发布了新的文献求助10
2秒前
pebble发布了新的文献求助10
2秒前
LooQueSiento完成签到,获得积分10
2秒前
shmily完成签到,获得积分10
3秒前
英吉利25发布了新的文献求助20
3秒前
4秒前
shoplog完成签到,获得积分20
4秒前
一切都好发布了新的文献求助10
4秒前
bkagyin应助林读书采纳,获得10
4秒前
weikang完成签到,获得积分10
4秒前
5秒前
6秒前
机智妙菡发布了新的文献求助10
6秒前
6秒前
6秒前
Rick应助托塔李天后采纳,获得10
7秒前
7秒前
7秒前
Maoxian完成签到,获得积分10
8秒前
乐乐应助魏嘉轩采纳,获得10
8秒前
8秒前
LL发布了新的文献求助10
8秒前
orixero应助alice采纳,获得10
8秒前
科研通AI6应助斯莫佩尔采纳,获得10
8秒前
枫影完成签到,获得积分10
9秒前
上官若男应助MASAMI采纳,获得10
9秒前
巫马代丝完成签到 ,获得积分10
10秒前
bl发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
南宫初柒完成签到 ,获得积分10
11秒前
brightface123完成签到 ,获得积分10
11秒前
充电宝应助灵巧谷芹采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577106
求助须知:如何正确求助?哪些是违规求助? 3996300
关于积分的说明 12372082
捐赠科研通 3670338
什么是DOI,文献DOI怎么找? 2022766
邀请新用户注册赠送积分活动 1056873
科研通“疑难数据库(出版商)”最低求助积分说明 944022