已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DL-DRL: A double-level deep reinforcement learning approach for large-scale task scheduling of multi-UAV

强化学习 计算机科学 启发式 调度(生产过程) 人工智能 计算 利用 机器学习 分布式计算 数学优化 算法 数学 计算机安全 操作系统
作者
Xiao Mao,Guohua Wu,Mingfeng Fan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2208.02447
摘要

Exploiting unmanned aerial vehicles (UAVs) to execute tasks is gaining growing popularity recently. To solve the underlying task scheduling problem, the deep reinforcement learning (DRL) based methods demonstrate notable advantage over the conventional heuristics as they rely less on hand-engineered rules. However, their decision space will become prohibitively huge as the problem scales up, thus deteriorating the computation efficiency. To alleviate this issue, we propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF), where we decompose the task scheduling of multi-UAV into task allocation and route planning. Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs, and we exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks given the maximum flight distance of the UAV. To effectively train the two models, we design an interactive training strategy (ITS), which includes pre-training, intensive training and alternate training. Experimental results show that our DL-DRL performs favorably against the learning-based and conventional baselines including the OR-Tools, in terms of solution quality and computation efficiency. We also verify the generalization performance of our approach by applying it to larger sizes of up to 1000 tasks. Moreover, we also show via an ablation study that our ITS can help achieve a balance between the performance and training efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘒彼小星完成签到 ,获得积分10
4秒前
婷婷完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
科研通AI2S应助xiaoyi采纳,获得10
8秒前
9秒前
美满的乐瑶完成签到 ,获得积分10
10秒前
11秒前
13秒前
SW发布了新的文献求助10
15秒前
wanci应助glock采纳,获得30
15秒前
研友_VZG7GZ应助ZSZ采纳,获得10
16秒前
huma完成签到,获得积分10
18秒前
舒心的芝麻完成签到 ,获得积分10
19秒前
若有光发布了新的文献求助10
19秒前
JamesPei应助端庄的钢铁侠采纳,获得10
29秒前
老虎皮发布了新的文献求助10
35秒前
36秒前
hahaha完成签到,获得积分10
37秒前
38秒前
上官若男应助xiao_J采纳,获得10
39秒前
SciGPT应助若有光采纳,获得10
40秒前
41秒前
林志伟完成签到 ,获得积分10
43秒前
晓晴完成签到,获得积分20
44秒前
45秒前
调皮小凡完成签到,获得积分10
46秒前
万能图书馆应助Ryy采纳,获得10
49秒前
51秒前
楚阔发布了新的文献求助10
57秒前
bkagyin应助动听的晓博采纳,获得10
58秒前
1分钟前
月报月报完成签到,获得积分10
1分钟前
芒果你真甜完成签到,获得积分10
1分钟前
许许发布了新的文献求助10
1分钟前
碧蓝香芦完成签到 ,获得积分10
1分钟前
fr发布了新的文献求助10
1分钟前
1分钟前
动听的晓博完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777501
求助须知:如何正确求助?哪些是违规求助? 3322845
关于积分的说明 10212016
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798030
科研通“疑难数据库(出版商)”最低求助积分说明 758193