亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks

计算机科学 机器学习 图形 安全性令牌 理论计算机科学 人工智能 计算机网络
作者
Mingchen Sun,Kaixiong Zhou,Xin He,Ying Wang,Xin Wang
标识
DOI:10.1145/3534678.3539249
摘要

Despite the promising representation learning of graph neural networks (GNNs), the supervised training of GNNs notoriously requires large amounts of labeled data from each application. An effective solution is to apply the transfer learning in graph: using easily accessible information to pre-train GNNs, and fine-tuning them to optimize the downstream task with only a few labels. Recently, many efforts have been paid to design the self-supervised pretext tasks, and encode the universal graph knowledge among the various applications. However, they rarely notice the inherent training objective gap between the pretext and downstream tasks. This significant gap often requires costly fine-tuning for adapting the pre-trained model to downstream problem, which prevents the efficient elicitation of pre-trained knowledge and then results in poor results. Even worse, the naive pre-training strategy usually deteriorates the downstream task, and damages the reliability of transfer learning in graph data. To bridge the task gap, we propose a novel transfer learning paradigm to generalize GNNs, namely graph pre-training and prompt tuning (GPPT). Specifically, we first adopt the masked edge prediction, the most simplest and popular pretext task, to pre-train GNNs. Based on the pre-trained model, we propose the graph prompting function to modify the standalone node into a token pair, and reformulate the downstream node classification looking the same as edge prediction. The token pair is consisted of candidate label class and node entity. Therefore, the pre-trained GNNs could be applied without tedious fine-tuning to evaluate the linking probability of token pair, and produce the node classification decision. The extensive experiments on eight benchmark datasets demonstrate the superiority of GPPT, delivering an average improvement of 4.29% in few-shot graph analysis and accelerating the model convergence up to 4.32X. The code is available in: https://github.com/MingChen-Sun/GPPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古铜完成签到 ,获得积分10
17秒前
科研通AI5应助yyg采纳,获得10
27秒前
31秒前
42秒前
yyg发布了新的文献求助10
49秒前
健壮的涑完成签到 ,获得积分10
49秒前
小白菜完成签到,获得积分10
1分钟前
搜集达人应助cyx采纳,获得10
1分钟前
1分钟前
H_C完成签到,获得积分10
1分钟前
2分钟前
3分钟前
cyx发布了新的文献求助10
3分钟前
3分钟前
Hello应助科研通管家采纳,获得10
4分钟前
ooouiia完成签到 ,获得积分10
4分钟前
ooouiia关注了科研通微信公众号
4分钟前
SCUWJ完成签到,获得积分10
4分钟前
SCUWJ发布了新的文献求助10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
cyx完成签到,获得积分10
5分钟前
6分钟前
6分钟前
不晓天完成签到,获得积分20
6分钟前
zz发布了新的文献求助10
6分钟前
不晓天发布了新的文献求助10
6分钟前
Hello应助zz采纳,获得10
6分钟前
Jasper应助不晓天采纳,获得10
6分钟前
夏瑞发布了新的文献求助10
6分钟前
阿鑫完成签到 ,获得积分10
6分钟前
6分钟前
夏瑞完成签到,获得积分10
6分钟前
嘚嘚发布了新的文献求助10
6分钟前
完美世界应助超帅寻双采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
7分钟前
科研通AI5应助yyg采纳,获得10
7分钟前
8分钟前
8分钟前
超帅寻双发布了新的文献求助10
8分钟前
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779113
求助须知:如何正确求助?哪些是违规求助? 3324752
关于积分的说明 10219817
捐赠科研通 3039871
什么是DOI,文献DOI怎么找? 1668456
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503