GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks

计算机科学 机器学习 图形 安全性令牌 理论计算机科学 人工智能 计算机网络
作者
Mingchen Sun,Kaixiong Zhou,Xin He,Ying Wang,Xin Wang
标识
DOI:10.1145/3534678.3539249
摘要

Despite the promising representation learning of graph neural networks (GNNs), the supervised training of GNNs notoriously requires large amounts of labeled data from each application. An effective solution is to apply the transfer learning in graph: using easily accessible information to pre-train GNNs, and fine-tuning them to optimize the downstream task with only a few labels. Recently, many efforts have been paid to design the self-supervised pretext tasks, and encode the universal graph knowledge among the various applications. However, they rarely notice the inherent training objective gap between the pretext and downstream tasks. This significant gap often requires costly fine-tuning for adapting the pre-trained model to downstream problem, which prevents the efficient elicitation of pre-trained knowledge and then results in poor results. Even worse, the naive pre-training strategy usually deteriorates the downstream task, and damages the reliability of transfer learning in graph data. To bridge the task gap, we propose a novel transfer learning paradigm to generalize GNNs, namely graph pre-training and prompt tuning (GPPT). Specifically, we first adopt the masked edge prediction, the most simplest and popular pretext task, to pre-train GNNs. Based on the pre-trained model, we propose the graph prompting function to modify the standalone node into a token pair, and reformulate the downstream node classification looking the same as edge prediction. The token pair is consisted of candidate label class and node entity. Therefore, the pre-trained GNNs could be applied without tedious fine-tuning to evaluate the linking probability of token pair, and produce the node classification decision. The extensive experiments on eight benchmark datasets demonstrate the superiority of GPPT, delivering an average improvement of 4.29% in few-shot graph analysis and accelerating the model convergence up to 4.32X. The code is available in: https://github.com/MingChen-Sun/GPPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panda完成签到 ,获得积分10
2秒前
2秒前
mushanes完成签到 ,获得积分10
4秒前
Hello应助鱼与木头采纳,获得10
5秒前
小美完成签到,获得积分10
6秒前
7秒前
8秒前
10秒前
黄雪蕊发布了新的文献求助10
12秒前
16秒前
科研通AI2S应助勤奋的擎采纳,获得20
17秒前
司空豁应助走四方采纳,获得10
17秒前
20秒前
杨微笑发布了新的文献求助10
21秒前
24秒前
FelixMasefield完成签到,获得积分20
24秒前
白石溪完成签到,获得积分10
25秒前
LAIJINSHENG发布了新的文献求助10
26秒前
鱼与木头发布了新的文献求助10
28秒前
bbdd2334发布了新的文献求助10
28秒前
研友_89jr6L发布了新的文献求助10
29秒前
小夜完成签到,获得积分10
31秒前
31秒前
32秒前
32秒前
SYHWW发布了新的文献求助10
35秒前
追寻微笑完成签到 ,获得积分10
36秒前
大肥猫发布了新的文献求助10
36秒前
鱼与木头完成签到,获得积分10
36秒前
noite发布了新的文献求助10
37秒前
Orange应助bbdd2334采纳,获得10
39秒前
jjj应助木子26年要毕业采纳,获得10
41秒前
勤恳的浩阑完成签到,获得积分10
41秒前
饱满的煎饼完成签到,获得积分10
41秒前
ddanren发布了新的文献求助10
41秒前
oboy完成签到,获得积分10
41秒前
YCC66完成签到 ,获得积分10
43秒前
希望天下0贩的0应助noite采纳,获得10
44秒前
44秒前
追寻微笑发布了新的文献求助30
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921883
求助须知:如何正确求助?哪些是违规求助? 3466729
关于积分的说明 10944315
捐赠科研通 3195451
什么是DOI,文献DOI怎么找? 1765599
邀请新用户注册赠送积分活动 855645
科研通“疑难数据库(出版商)”最低求助积分说明 795019