GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks

计算机科学 机器学习 图形 安全性令牌 理论计算机科学 人工智能 计算机网络
作者
Mingchen Sun,Kaixiong Zhou,Xin He,Ying Wang,Xin Wang
标识
DOI:10.1145/3534678.3539249
摘要

Despite the promising representation learning of graph neural networks (GNNs), the supervised training of GNNs notoriously requires large amounts of labeled data from each application. An effective solution is to apply the transfer learning in graph: using easily accessible information to pre-train GNNs, and fine-tuning them to optimize the downstream task with only a few labels. Recently, many efforts have been paid to design the self-supervised pretext tasks, and encode the universal graph knowledge among the various applications. However, they rarely notice the inherent training objective gap between the pretext and downstream tasks. This significant gap often requires costly fine-tuning for adapting the pre-trained model to downstream problem, which prevents the efficient elicitation of pre-trained knowledge and then results in poor results. Even worse, the naive pre-training strategy usually deteriorates the downstream task, and damages the reliability of transfer learning in graph data. To bridge the task gap, we propose a novel transfer learning paradigm to generalize GNNs, namely graph pre-training and prompt tuning (GPPT). Specifically, we first adopt the masked edge prediction, the most simplest and popular pretext task, to pre-train GNNs. Based on the pre-trained model, we propose the graph prompting function to modify the standalone node into a token pair, and reformulate the downstream node classification looking the same as edge prediction. The token pair is consisted of candidate label class and node entity. Therefore, the pre-trained GNNs could be applied without tedious fine-tuning to evaluate the linking probability of token pair, and produce the node classification decision. The extensive experiments on eight benchmark datasets demonstrate the superiority of GPPT, delivering an average improvement of 4.29% in few-shot graph analysis and accelerating the model convergence up to 4.32X. The code is available in: https://github.com/MingChen-Sun/GPPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
unqiue发布了新的文献求助10
1秒前
不知名的呆毛完成签到 ,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
盛夏应助科研通管家采纳,获得10
3秒前
111发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
李爱国应助哈哈采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得50
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
乐观三问完成签到 ,获得积分10
3秒前
所所应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
华仔应助刘刘是个der采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
竹筏过海应助科研通管家采纳,获得100
4秒前
4秒前
星苒给星苒的求助进行了留言
4秒前
左右完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
asdfzxcv应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得30
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得20
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
asdfzxcv应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Criminology34应助冷酷以太采纳,获得10
5秒前
5秒前
6秒前
unqiue完成签到,获得积分0
7秒前
华仔应助Alan采纳,获得10
7秒前
ttt完成签到,获得积分20
8秒前
ZM完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646642
求助须知:如何正确求助?哪些是违规求助? 4771984
关于积分的说明 15036015
捐赠科研通 4805413
什么是DOI,文献DOI怎么找? 2569677
邀请新用户注册赠送积分活动 1526636
关于科研通互助平台的介绍 1485860